第一题:跳跳棋
题目内容
已知存在一个跳跳棋的棋盘( 行数 0 < M ≤ 20 0\lt M \le 20 0<M≤20 ,列数 0 < N ≤ 20 0\lt N\le 20 0<N≤20 ),棋盘中存在 K K K 个棋子( 0 < K ≤ M ∗ N 0\lt K\le M*N 0<K≤M∗N )
输出指定棋子到达指定位置需要跳动的次数及路径(假定最多只有一条路径)
如果无法到达,则输出 0 0 0 ;如果入参不合法,则输出 0 0 0 ;
其中:棋盘使用二维数组表示, 1 1 1 表示有棋子, 0 0 0 表示无棋子
跳跳棋规则如下:
- 棋子可以从当前位置向其周边的 8 8 8 个方向跳动,但可以发起跳动的前提是:在发起的方向上,与当前位置紧临的位置有棋子
- 棋子可以横跨同一方向的多个紧临的棋子跳动
- 棋子可以连续跳动
- 棋子不能往回走(即棋子不能重复经过同一位置)
输入描述
第 0 0 0 行: M N K M\ N\ K M N K (其中 M M M 为二维数组的行数 0 < M ≤ 20 0\lt M\le 20 0<M≤20 , N N N 为列数 0 < N ≤ 20 0\lt N\le 20 0<N≤20 , K K K 为棋盘棋子的数量 0 < K ≤ M × N 0\lt K\le M\times N 0<K≤M×N , M N K M\ N\ K M N K以空格分隔)
第 1 − K 1 - K 1−K 行:棋子的位置,行列以空格分隔
第 K + 1 K+1 K+1 行:指定棋子的起始位置,行列以空格分隔
第 K + 2 K+2 K+2 行:指定棋子的到达位置,行列以空格分隔
输出描述
输出指定棋子到达指定位置需要跳动的次数及路径(假定最多只有一条路径)
样例
样例一:
输入
5 7 9
1 2
1 4
2 1
2 3
2 5
3 3
4 2
4 3
4 4
4 2
0 4
输出
2
2 4
0 4
样例二:
输入
6 7 9
1 2
1 4
2 1
2 3
2 5
3 3
4 2
4 3
4 4
4 4
0 3
输出
0
样例三:
输入
6 6 11
1 2
1 4
2 1
2 2
2 3
2 5
3 3
4 2
4 3
4 4
5 3
4 4
1 5
输出
3
1 1
1 3
1 5
第二题:网络最小可达跳数之和
题目内容
现有一份大小为 N × N N\times N N×N 的网络部署地图,其中每个单元格都表示 1 1 1 个地区,每个单元格都用 A / B / C A\ /B\ /C A /B /C 标记好了。
其中 A A A 代表此地区接入的是入公司的网络, B B B 代表此地区接入的是 B B B 公司的网络, C C C 代表超算中心。
A A A 公司网络只能通过自家的网络逐跳接入超算中心(每一跳只能上下/左/右跳动一格,且跳入的地区部署的也必须是 A A A 公司网络或者是终点 C C C 超算中心)。
请你算出所有部署 A A A 公司网络的地区到达离自己最近的超算中心 C C C 所经过的跳数的总和。
输入描述
第一行为网络部署图的阶数 N N N ;
第二行到第 N + 1 N+1 N+1 行为具体的网络部署图。
注意:
1 < N ≤ 1 0 2 1\lt N\le 10^2 1<N≤102
每个地区部署的网络一定是 A A A 或者 B B B ,或者超算中心 C C C
标记为 A A A 的单元格数量范围 [ 1 , 1 0 4 ] [1, 10^4] [1,104] ,标记为 B B B 的单元格数量范围 [ 0 , 1 0 3 ] [0, 10^3] [0,103] ,标记为 C C C 的单元格数量范围 [ 1 , 1 0 3 ] [1, 10^3] [1,103]
输出描述
所有 A A A 公司网络所在地区到达离自己最近的超算中心 C C C 所经过的跳数的总和。
特别地,如果某个 A A A 网络无法到达任一超算中心 C C C (都被 B B B 阻隔了),则这个 A A A 网络的跳数为 0 0 0 。
样例
样例一:
输入
3
A B C
A A A
A A C
输出
13
样例解释
每个 A A A 公司的网络到达超算中心的最小跳数如下:
4 0 0
3 2 1
2 1 0
跳数总和为 4 + 3 + 2 + 1 + 2 + 1 = 13 4+3+2+1+2+1=13 4+3+2+1+2+1=13
样例二:
输入
4
A B C C
B A B C
B B A C
A C B C
输出
2
样例解释
每个 A A A 公司的网络到达超算中心的最小跳数如下:
0 0 0 0
0 0 0 0
0 0 1 0
1 0 0 0
跳数总和为 1 + 1 = 2 1+1=2 1+1=2
4万+

被折叠的 条评论
为什么被折叠?



