引入
DataFrame处理的数据中经常会看到某一列的数据类型是时间类型或者是字符串但是需要转成时间类型。什么是时间类型?与Python中使用的模块time、datetime等有什么联系?
首先看看下面这张图,如果看到数据的如果类型是datetime64[ns]说明就是DataFrame中的日期时间类型。

但是有时候我们看到的数据明明都是日期格式,怎么就偏偏不是datetime64[ns]类型呢?而显示的是object类型,比如下面你看到的数据


上面看到都是object类型,object类型在获取日期时间的年月日时分秒的时候就不方便,比获取
简单回顾Python日期时间模块
python标准库包含用于日期(date)和时间(time)数据的数据类型,而且还有日历方面的功能。我们主要会用到datetime、time以及calendar模块。
datetime模块
datetime模块常用的类如下:
| 类型 | 说明 |
|---|---|
| date | 日期对象,以公历形式存储日期(年、月、日) |
| time | 时间对象,将时间存储为:时、分、秒、毫秒 |
| datetime | 存储日期和时间 |
| timedelta | 时间间隔,表示两个datetime之间的差 |
附录(日期和时间的格式化符号表)
| 符号 | 说明 |
|---|---|
%y |
两位数的年份表示(00-99) |
%Y |
四位数的年份表示(000-9999) |
%m |
月份& |

这篇博客探讨了在Python数据分析中如何处理时间序列,包括DataFrame中的日期时间类型识别,Python的datetime、time和calendar模块的使用,以及Pandas中进行日期转换、提取和计算的方法。通过实例展示了如何将object类型转换为datetime64[ns],计算时间差,以及处理日期的常见操作。
最低0.47元/天 解锁文章
6261

被折叠的 条评论
为什么被折叠?



