最短路径--------Dijkstra算法

文章讨论了Dijkstra算法和Floyd算法在求解最短路径问题上的差异。Dijkstra适用于权重为正的情况,速度快,而Floyd能处理负权重并找到任意两点间最短路径,但速度较慢。给定一个有向图的问题实例中,应用Dijkstra算法求解1到n的最短路径。作者还回顾了DFS和BFS在寻找路径中的角色,并提到Floyd的动态规划思想。文章强调Dijkstra的效率和复杂性,指出可能需要使用优先队列进行优化。

Dijkstra算法和Floyd是不同的。首先Floyd可以求任意两点的最短路径,而且权重可以为负数。但Dijkstra权重只能是正数,并且只能求你输入的两点的最短距离。不过Floyd的时间复杂度是n^{3},速度慢,Dijkstra时间复杂度是n^{2}速度快,现在很多导航算法也是用的Dijkstra,因为速度快。

 学Dijkstra算法请点我

接下来看以下题目

给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1。

输入格式
第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式
输出一个整数,表示1号点到n号点的最短距离。

如果路径不存在,则输出-1。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。

输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3

#include <iostream>
#include <cstring>
using namespace std;
int n,m;              //n个顶点,m个有向边 
int a[505][505];
int b[505]; 
int visited[505];
int dijkstra(int n,int m){
	for(int i=1;i<=n;i++){
		int index=-1;
//这个-1很巧妙,index实际是找顶点最小,且没有遍历过的顶点
		b[1]=0;
		for(int j=1;j<=n;j++){
			if(!visited[j]&&(index==-1 || b[j]<b[index])){
				index=j;
			}
		} 
		visited[index]=1;
		for(int j=1;j<=n;j++){
			if(b[index]+a[index][j]<b[j]){
				b[j]=b[index]+a[index][j];
			}
		}
	}
	if(b[n]==0x3f3f3f) return -1;
	else return b[n];
}
int main(){
	memset(a,0x3f,sizeof(a));
	cin>>n>>m; 
	for(int i=1;i<=m;i++){
		int x,y,z;
		cin>>x>>y>>z;
		a[x][y]=a[x][y]>z?z:a[x][y];
	}
	memset(b,0x3f,sizeof(b));
	memset(visited, 0, sizeof(visited));
	cout<<dijkstra(n,m);

	return 0;
}

 哎呀,怎么说这个代码我感觉是有问题的,单看这个例题是没有问题,它先遍历顶点小的,再遍历大的,如果1号顶点与3,4顶点相连,3,4和2顶点相连,形成一个回路,此时d[1]=0;但是接下来要求到1到2顶点的最短距离,可是3,4都不知道。我第一反应是用一个链表进行数据处理,看网上有很多优先队列,也有优先队列和链表一起的。还得继续学习啊。

学习到现在已经学了4种关于路线的算法了,小小总结一下:

1.DFS(深度优先搜索):一条路走到黑,一般递归实现,时间复杂度高,一般用于有多少种路线。

2.BFS(宽度优先搜索):用来求最短路径问题,不过时间复杂度也高,多用来遍历一个范围的数,用队列实现;

3.Floyd:dp思维的算法,dp也能叫做有记忆的递归,它可以求任意两点的最短距离(都一次性存储下来了)。

4.Dijkstra:应该是最短路径最快的了,不过权重不能为负,贪心思维,不过也有dp思维,优化还要链表和优先队列,最快也最复杂。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

左手的月光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值