一、设计思路:
1. 定义多项式结点的数据结构:
首先,需要定义一个多项式结点的数据结构,包含系数和指数,并且要有指向下一个结点的指针。这将作为链表的结点类型。
typedef struct Node {
int coefficient; // 系数
int exponent; // 指数
struct Node* next; // 指向下一个结点的指针
} Node;
2. 创建多项式链表:
创建函数用于插入结点到多项式链表中。你可以定义一个函数 `insertNode`,该函数将根据指数的大小将结点插入到适当的位置,并合并具有相同指数的项。
3. 实现相加运算:
创建一个函数用于相加两个多项式链表。这个函数将遍历两个多项式链表,相同指数的项系数相加,然后将结果插入到新的链表中。
4. 实现相减运算:
类似相加运算,创建一个函数用于相减两个多项式链表。这个函数将遍历两个多项式链表,相同指数的项系数相减,然后将结果插入到新的链表中。
5. 验证运算的正确性:
在 `main` 函数中创建两个多项式,分别插入结点,然后调用相加和相减运算的函数,将结果打印出来,以验证运算的正确性。
6. 释放内存:
最后释放用于存储多项式的链表的内存,以避免内存泄漏。
二、示例代码:
#include <stdio.h>
#include <stdlib.h>
// 定义多项式的结点
typedef struct Node {
int coefficient; // 系数
int exponent; // 指数
struct Node* next; // 指向下一个结点的指针
} Node;
// 定义多项式链表
typedef struct Polynomial {
Node* head; // 多项式链表的头结点
} Polynomial;
// 创建一个多项式结点
Node* createNode(int coefficient, int exponent) {
Node* newNode = (Node*)malloc(sizeof(Node));
if (newNode != NULL) {
newNode->coefficient = coefficient;
newNode->exponent = exponent;
newNode->next = NULL;
}
return newNode;
}
// 插入一个多项式结点到链表
void insertNode(Polynomial* polynomial, int coefficient, int exponent) {
Node* newNode = createNode(coefficient, exponent);//创建一个新的多项式结点,使用 createNode 函数,将传入的系数和指数分配给新结点
if (newNode == NULL) {
printf("内存分配失败\n");
exit(1);
}
Node* current = polynomial->head;//创建了一个指向链表头结点的指针 current,用于遍历链表
Node* previous = NULL;//这是一个指向前一个结点的指针,初始化为 NULL,用于在插入新结点时维护链表的连接关系
// 找到合适的位置插入结点
while (current != NULL && current->exponent > exponent) {//确保按照指数的递减顺序插入结点
previous = current;//每次迭代中,将 current 赋值给 previous,以便在下一次迭代时可以将新结点插入到正确的位置
current = current->next;//将 current 指向下一个结点,以便在下一次迭代中继续查找
}
// 如果指数相同,合并系数
if (current != NULL && current->exponent == exponent) {
current->coefficient += coefficient;//如果找到了相同指数的项,将它们的系数相加
free(newNode);//释放新结点的内存
}
else {
newNode->next = current;//如果没有找到具有相同指数的项,将新结点的 next 指针指向 current,以连接到链表
if (previous != NULL) {//如果 previous 不为 NULL,表示不是在链表的开头插入结点,将 previous 结点的 next 指针指向新结点 newNode。
previous->next = newNode;
}
else {//如果 previous 为 NULL,表示是在链表的开头插入结点,将多项式链表的 head 指针指向新结点 newNode
polynomial->head = newNode;
}
}
}
// 打印多项式
void printPolynomial(Polynomial* polynomial) {
Node* current = polynomial->head;
if (current == NULL) {
printf("多项式为空\n");
}
else {
while (current != NULL) {
if (current->coefficient != 0) {
printf("%dx^%d ", current->coefficient, current->exponent);
}
current = current->next;
}
printf("\n");
}
}
// 相加两个多项式
Polynomial addPolynomials(Polynomial* poly1, Polynomial* poly2) {
Polynomial result;
result.head = NULL;
Node* current1 = poly1->head;
Node* current2 = poly2->head;
while (current1 != NULL && current2 != NULL) {
if (current1->exponent > current2->exponent) {
insertNode(&result, current1->coefficient, current1->exponent);
current1 = current1->next;
} else if (current2->exponent > current1->exponent) {
insertNode(&result, current2->coefficient, current2->exponent);
current2 = current2->next;
} else {
int newCoefficient = current1->coefficient + current2->coefficient;
if (newCoefficient != 0) {
insertNode(&result, newCoefficient, current1->exponent);
}
current1 = current1->next;
current2 = current2->next;
}
}
// 处理多项式1或多项式2还有剩余的情况
while (current1 != NULL) {
insertNode(&result, current1->coefficient, current1->exponent);
current1 = current1->next;
}
while (current2 != NULL) {
insertNode(&result, current2->coefficient, current2->exponent);
current2 = current2->next;
}
return result;
}
// 相乘两个多项式
Polynomial multiplyPolynomials(Polynomial* poly1, Polynomial* poly2) {
Polynomial result;
result.head = NULL;
Node* current1 = poly1->head;
while (current1 != NULL) {
Node* current2 = poly2->head;
while (current2 != NULL) {
int newCoefficient = current1->coefficient * current2->coefficient;
int newExponent = current1->exponent + current2->exponent;
insertNode(&result, newCoefficient, newExponent);
current2 = current2->next;
}
current1 = current1->next;
}
return result;
}
// 释放多项式链表的内存
void freePolynomial(Polynomial* polynomial) {
Node* current = polynomial->head;
while (current != NULL) {
Node* temp = current;
current = current->next;
free(temp);
}
polynomial->head = NULL;
}
int main(void) {
Polynomial poly1;
poly1.head = NULL;
Polynomial poly2;
poly2.head = NULL;
// 插入多项式1和多项式2的结点
insertNode(&poly1, 3, 2);
insertNode(&poly1, 5, 1);
insertNode(&poly1, 2, 0);
insertNode(&poly2, 2, 3);
insertNode(&poly2, -4, 1);
insertNode(&poly2, 1, 0);
// 打印 poly1 和 poly2
printf("多项式1: ");
printPolynomial(&poly1);
printf("多项式2: ");
printPolynomial(&poly2);
// 调用相加函数并打印结果
Polynomial sum = addPolynomials(&poly1, &poly2);
printf("相加结果: ");
printPolynomial(&sum);
// 调用相乘函数并打印结果
Polynomial product = multiplyPolynomials(&poly1, &poly2);
printf("相乘结果: ");
printPolynomial(&product);
// 释放内存
freePolynomial(&poly1);
freePolynomial(&poly2);
freePolynomial(&sum);
freePolynomial(&product);
return 0;
}