时间复杂读和空间复杂度

文章介绍了衡量算法效率的两个重要指标——时间复杂度和空间复杂度,讲解了如何通过大O渐进表示法分析算法的时间复杂度,并通过多个案例分析了不同算法的时间和空间复杂度,包括斐波那契数列的实现以及排序算法等。此外,还提供了在线编程挑战(OJ)的解题示例,探讨了不同解法的时间复杂度。
摘要由CSDN通过智能技术生成

前言

在我们写的一个程序,越简洁就一定越好吗?如果不是,那该如何衡量该程序的好坏呢?这时候我们应该用算法复杂度去衡量,那什么是算法复杂度呢?接下来就让我们学习算法复杂度吧!从而正式进入数据结构的学习!

1.算法效率

1.1如何衡量一个算法的好坏

eg:

long long Fib(int N)
{
	if (N < 3)
	{
		return 1;
	}
	return Fib(N - 1) + Fib(N - 2);
}

上面的代码为为斐波那契数列的实现方式,虽然简洁但不一定好。

1.2算法复杂度

算法在编写成可执行程序后,运行时需要耗费时间和空间资源(内存),因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度;时间复杂度是一个算法的运行快慢的重要量度,而空间复杂度一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小,那时候程序员把空间复杂很重要。但经过计算机行业的发展,计算机的存储容量已经达到很高的程度,所以我们已经不需要再特别关注一个算法的空间复杂度。🦀🦀🦀

2.时间复杂度

2.1时间复杂度的概念

时间复杂度的定义:算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上是算不出来的,但是一个算法所耗费的时间与语句的执行次数成正比例的,所以算法中的基本操作的执行次数为算法的时间复杂度,即:找到某条语句与问题规模之间的数学表达式,就是算出了该算法的时间复杂度。😾😾😾

void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; j++)
		{
			count++;
		}
	}
	for (int k = 0; k < 2 * N; k++)
	{
		++count;
	}
	int M = 20;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}
int main()
{
	Func1(10);
	return 0;
}

在这里插入图片描述

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,只需要计算大概执行次数,那么这里我们就要使用到大O渐进表示法

2.2大O的渐进表示法

大O符号(Big O notation): 是用于函数渐进行为的数学符号。🍭🍭🍭

推导大O阶级方法:
1.用常数1取代运行时间中的所有加法常数。
2.在修改后的运行次数中,只保留最高项。
3.如果最高项存在且不是1,则去除与该项相乘的常数,得到的结果就是大O阶。

使用大O阶渐进法以后,上面代码中Func1的时间复杂度为O(N^2)。

  • N=10 F(N)=100
  • N=100 F(N)=10000
  • N=1000 F(N)=1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项。简洁明了的表示出执行的次数,另外有些算法存在最好、平均和最坏的情况: 🎉🎉🎉

最坏的情况:任意输入规模的最大运行次数(上界)。
平均情况:任意输入规模的期望运行次数。
最好的情况的最小运行次数(下界)。
例如:在一个长度为N的数组中搜素一个数据x
最坏的情况:1次找到
最坏的情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏的情况,所以数组在搜索数据的时间复杂度为O(N)

2.3常见时间复杂度案例分析

eg1:

#include<stdio.h>
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; k++)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}
int main()
{
	Func2(100);
	return 0;
}

解析: 上面的代码中执行了2N+10次,通过大O阶方法知道,只保留最高项,系数对结果的影响不大,所以该代码的时间复杂度为O(N)
eg2:

void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0;k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

解析: 上面的代码执行了M+N次,因为有两个未知数M和N,而且没有说明两个未知数谁远大于谁的情况,所以认定时间复杂度为O(M+N);若是说明M远大于N,则时间复杂度为O(M);若是说明N远大于M,则时间复杂度为O(N);若是M和N一样大,代码执行了2M(2N)次,时间复杂度为O(M)或O(N)。

eg3:

void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; k++)
	{
		count++;
	}
	printf("%d\n", count);
}

解析: 实例3中执行了10次,通过大O阶方法,时间复杂度为O(1),在这里我们需要知道时间复杂度O(1)不是一次,而是常数次。

eg4:

const char* strchr(const char* str, int character)
{
	while (*str)
	{
		if (*str == character)
		{
			return str;
		}
		++str;
	}
}

解析: 实例4中最好的情况为1次,最坏的情况为N次,时间复杂度为最坏的情况,所以时间复杂度为O(N)。

eg5:

//计算BubbleSort的时间复杂度
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; end--)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; i++)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
		{
			break;
		}
	}
}

解析: 实例5的基本操作最好执行了N次,最坏执行了(N*(N+1))次,通过推导大O阶方法和时间复杂度一般是最坏的情况,时间复杂度为O(N^2)。

eg6:

//计算BinarySearch的时间复杂度
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = 0;
	//[begin,end]:begin和end是左闭区间和右闭区间,因此有等号
	while (begin <= end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] > x)
			begin = mid;
		else if (a[mid] > x)
			end = mid - 1;
		else
			return mid;
	}
	return -1;
}

解析: 最坏的情况:区间缩放到一个值时,要么找到,要么找不到;N/2/2/2/…/2=1,折半查找找多少次就除2,假设N是数组个数,x为查找的次数,2^x=N–>x=log2N;所以最好的时间复杂度为O(1)(即找一次就找到了);最坏的情况为:O(logN)(因为log2N不好书写<以2为底数的对数>,所以我们可以把这个数化为logN,还有些地方会写成lgN,其他底数不能简写),所以算法时间复杂度O(logN)。

eg7:

long long Fac(size_t N)
{
	if (0 == N)
		return 1;

	return Fac(N - 1) * N;
}

在这里插入图片描述

解析: 实例7通过计算分析发现基本操作递归N次,时间复杂度为O(N)。

eg8:

//计算斐波那契递归Fib的时间复杂度
long long Fib(size_t N)
{
	if (N < 3)
		return 1;

	return Fib(N - 1) + Fib(N - 2);
}

图形理解:
在这里插入图片描述

解析: 实例8通过计算分析发现基本操作递归2^N次,时间复杂度为 O(2^N)

3.空间复杂度

时间复杂度也是一个数学表达式,对一个算法在运行过程中临时占用存储空间大小的量度。空间复杂度不是程序占用了多少字节,而是算变量的个数,同样也使用大O渐进表示法。
注意: 函数运行时所需要的站空间在编译期间已经确定好了,此空间复杂度主要通过函数在运行过程中申请的额外空间来确定。

//计算机BubbleSort的空间复杂
#include<stdio.h>
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; i++)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
		{
			break;
		}
	}
}

解析: 函数开辟了end\exchange等常数个变量,系统使用开辟了常数个额外的空间,所以空间复杂度为O(1)。

eg2:

//计算Fibonacci的空间复杂度
//返回斐波那契数列的前n项
long long* Fibacci(size_t n)
{
	if (n == 0)
	{
		return NULL;
	}
	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 0; i <= n; i++)
	{
		fibArray[1] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

解析: 实例2中用malloc函数动态开辟了N个空间,空间复杂度为O(N)。

eg3:

long long Fac(size_t N)
{
	if (N == 0)
	{
		return 0;
	}
	return Fac(N - 1) + N;
}

解析: 实例3中函数递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间,空间复杂度为O(N)。

eg4:

void F1()
{
	int a = 0;
	printf("%p\n", &a);
}
void F2()
{
	int b = 0;
	printf("%p\n", &b);
}
#include<stdio.h>
int main()
{
	F1();
	F2();
	return 0;
}//输出结果是什么?

代码运行的结果为:
在这里插入图片描述

解析: 由上面的代码可以看出,编译器在执行程序的时候,先为F1函数开辟空间,等F1函数执行完后,把空间还给操作系统后,才开始为F2函数分配栈帧空间,而不是同时为F1、F2函数开辟好函数空间才开始执行程序,所以F1\F2函数的地址都相同。

eg5:

//计算斐波那契数递归Fib的空间复杂度
long long Fib(size_t N)
{
	if (N < 3)
		return 1;

	return Fib(N - 1) + Fib(N - 2);
}

图形理解:
在这里插入图片描述

解析: 理解了实例4也就不难理解实例5的情况了,操作系统为函数开辟N个栈帧,每个栈帧使用了常数个空间,空间复杂度为O(N)。

总结: 通过了上面时间复杂度和空间复杂度的学习,我们可以总结为:时间是一去不复返的,不可重复利用;空间用了归还以后,可以重复利用。 🐇🐇🐇

4.常见时间复杂度

一般算法常见的复杂度如下:

5201314O(1)常数阶
3n+4O(n)线性阶
3n^2+4n+5O(n^2)平方阶
3log(2)n+4O(logn)对数阶
2n+3nlog(2)+14O(nlogn)nlogn阶
n^3+2n ^2 +4n+6O(n^3)立方阶
2^nO(2^n)指数阶

在这里插入图片描述

5.复杂度OJ练习

练习一:
在这里插入图片描述
解法一:

int missingNumber(int* nums, int numsSize)
{
    int i = 0;
    int sum = (0 + numsSize) * (numsSize + 1) / 2;
    int sum1 = 0;
    for (i = 0; i < numsSize; i++)
    {
        sum1 += nums[i];
    }
    sum = sum - sum1;
    return sum;
}
#include<stdio.h>
int main()
{
    int arr[6] = { 1,2,3,4,5 };
    int ret = missingNumber(arr, 6);
    printf("%d\n", ret);
    return 0;
}

解法二:

int missingNumber(int* nums, int numsSize)
{
    int i = 0;
    int sum = 0;
    for (i = 0; i < numsSize - 1; i++)
    {
        sum ^= nums[i];
    }
    for (i = 0; i < numsSize; i++)
    {
        sum ^= i;
    }
    return sum;
}
#include<stdio.h>
int main()
{
    int arr[7] = { 0,1,2,3,4,5 };
    int ret = missingNumber(arr, 7);
    printf("%d\n", ret);
    return 0;
}

解析: 解法一用等差数列的公式直接求出有序数组范围的和,减去有序数组的所有数的和后,最后剩下便是缺失的整数,该方法中用遍历的方法减去数组中的数,基本执行操作N次,时间复杂度为O(N);解法二中,运用了异或运算符的性质,进行遍历,最后异或出来就是缺少的整数了,该方法基本执行操作2N次,根据大O渐进法时间复杂度为O(N)。

练习二:
在这里插入图片描述
解法一:

//逆置法
#include<stdio.h>
void revearse(int* src, int* dest)
{
    int tmp = 0;
    while (src < dest)
    {
        tmp = *src;
        *src = *dest;
        *dest = tmp;
        src++;
        dest--;
    }
}
void rotate(int* nums, int numsSize, int k)
{
    if (k > numsSize)
    {
        k %= numsSize;
    }
    //注意逆置下标位置
    revearse(nums, nums + numsSize - k - 1);
    revearse(nums + numsSize - k, nums + numsSize - 1);
    revearse(nums, nums + numsSize - 1);
}
int main()
{
	int nums[7] = { 1,2,3,4,5,6,7 };
	int k = 3;
    rotate(nums, 7, 3);
    int i = 0;
    for (i = 0; i < 7; i++)
    {
        printf("%d ", nums[i]);
    }
    return 0;
}

图形理解:
在这里插入图片描述

代码运行的结果为:
在这里插入图片描述
解法二:

//用空间换时间
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
void rotate(int* nums, int numsSize, int k)
{
    if (k > numsSize)
    {
        k %= numsSize;
    }
    int* tmp = (int*)malloc(numsSize * sizeof(int));
    if (tmp == NULL)
    {
        perror("malloc");
        return;
    }
    //控制好区间
    memcpy(tmp, nums + numsSize - k, k * sizeof(int));
    memcpy(tmp+k, nums, (numsSize-k) * sizeof(int));
    memcpy(nums, tmp, numsSize * sizeof(int));
    free(tmp);
    tmp=NULL;
}
int main()
{
	int nums[7] = { 1,2,3,4,5,6,7 };
	int k = 3;
    rotate(nums, 7, 3);
    int i = 0;
    for (i = 0; i < 7; i++)
    {
        printf("%d ", nums[i]);
    }
    return 0;
}

代码运行的结果为:
在这里插入图片描述

解法三:

//暴力匹配法
void rotate(int* nums, int numsSize, int k)
{
    int i = 0;
    for (i = 0; i < k; i++)
    {
        int tmp = nums[numsSize - 1];
        //把除数组之外的数字往后移动
        for (int end = numsSize - 2; end>=0;end--)
        {
            nums[end+1] = nums[end];
        }
        //一次逆置一个数字
        nums[0] = tmp;
    }
}
#include<stdio.h>
int main()
{
	int nums[7] = { 1,2,3,4,5,6,7 };
	int k = 3;
    rotate(nums, 7, 3);
    int i = 0;
    for (i = 0; i < 7; i++)
    {
        printf("%d ", nums[i]);
    }
    return 0;
}

代码运行的结果为:
在这里插入图片描述

解析: 解法一先逆置前n-k个,执行了n-k次,然后逆置后面k个,执行了k次,最后整体逆置(n个),执行了n次,总的基本操作执行了2N次,根据大O渐进法,时间复杂度为O(N);解法二类似解法一,把malloc函数开辟了N个空间的起始地址返回给tmp,先用memcpy拷贝数组后面k个到tmp前面,执行操作k次,然后用把数组前n-k个拷贝到tmp后面的位置,执行操作n次,最后把tmp中逆置的数再拷贝回数组,执行操作n次,总的基本操作执行了2N次;暴力匹配法,时间复杂为O(N^2)。
这两道oj题分别为消失的数字旋转数组,大家感兴趣可以试一下。

总结

本章我们一起学习了数据结构中的时间复杂度和空间复杂度,知道了如何去判断一个算法、程序的好坏,希望本章内容对你了解时间复杂度和空间复杂度有些许帮助!最后感谢大家阅读,如有不对,欢迎纠正!🎠🎠🎠

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值