-----------------------------------------------------------------------------------------------
这是我在我的网站中截取的文章,有更多的文章欢迎来访问我自己的博客网站rn.berlinlian.cn,这里还有很多有关计算机的知识,欢迎进行留言或者来我的网站进行留言!!!
-----------------------------------------------------------------------------------------------
一、二元标签简介
在推荐系统中,并不是所有场景都会有用户的明确评分(比如 1 到 5 星)。更多时候,我们只能观察到用户是否产生了某种行为,例如是否点击、是否购买、是否点赞。这类数据往往用 二元标签(Binary labels) 来表示。
所谓二元标签,就是把用户的行为转化为 0/1 的结果:
-
1 表示用户与物品发生了正向的交互(如点击、购买、喜欢);
-
0 表示用户没有发生交互;
-
? 表示该物品尚未展示给用户,因此标签未知。
通俗理解:
这就像一次二选一的问答:用户看见某个物品后,要么“感兴趣” (1),要么“不感兴趣” (0)。推荐系统的目标就是根据已有的观测数据,推断用户对未展示物品的兴趣概率。

最低0.47元/天 解锁文章

535

被折叠的 条评论
为什么被折叠?



