
目录
一、CAP定理
CAP定理,指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可兼得。
- 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
- 可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)
- 分区容忍性(P):以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。
CAP原则的精髓就是要么AP,要么CP,要么AC,但是不存在CAP。如果在某个分布式系统中数据无副本, 那么系统必然满足强一致性条件, 因为只有独一数据,不会出现数据不一致的情况,此时C和P两要素具备,但是如果系统发生了网络分区状况或者宕机,必然导致某些数据不可以访问,此时可用性条件就不能被满足,即在此情况下获得了CP系统,但是CAP不可同时满足。因此在进行分布式架构设计时,必须做出取舍。
二、服务注册中心产品比较
服务注册中心主流产品如下:
Zookeeper和Consul保证的是CP,而Eureka则是AP,Nacos不仅支持CP也支持AP。
当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接down掉不可用。也就是说,服务注册功能对可用性的要求要高于一致性。但是Zookeeper会出现这样一种情况,当master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30 ~ 120s, 且选举期间整个Zookeeper集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题使得Zookeeper集群失去master节点是较大概率会发生的事,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。
所以Eureka看明白了这一点,因此在设计时就优先保证可用性。Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而Eureka的客户端在向某个Eureka注册或时如果发现连接失败,则会自动切换至其它节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。除此之外,Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况:
- Eureka不再从注册列表中移除因为长时间没收到心跳而应该过期的服务
- Eureka仍然能够接受新服务的注册和查询请求,但是不会被同步到其它节点上(即保证当前节点依然可用)
- 当网络稳定时,当前实例新的注册信息会被同步到其它节点中
因此, Eureka可以很好的应对因

最低0.47元/天 解锁文章
931

被折叠的 条评论
为什么被折叠?



