- 博客(28)
- 收藏
- 关注
原创 数据处理与统计分析——10-Pandas可视化-Matplotlib的常用API
Matplotlib 提供了丰富的自定义选项,允许用户修改图形的细节,如颜色、线条样式、坐标轴等。线条样式和颜色:通过colorlinestylelinewidth参数设置线条属性。标记:通过marker设置数据点的标记样式。坐标轴范围plt.xlim()和plt.ylim()控制坐标轴的显示范围。图例用于添加图例。plt.show()
2024-12-07 21:45:07
1281
原创 数据处理与统计分析——09-Pandas的时间日期类型
在pandas中,处理时间日期数据时有几种常见的数据类型,专门用于表示时间序列和日期时间数据。以下是常用的pandas。
2024-12-07 21:34:45
703
原创 数据处理与统计分析——08-Pandas中处理数据缺失值的方法
简介好多数据集都含缺失数据。缺失数据有多重表现形式NULLNaN数据中出现缺失值是很常见的计算的过程中, 两个表可能会有缺失原始的数据中也有可能直接带着缺失值数据处理和模型训练的时候, 有很多场景要求必须先把缺失值处理掉,想处理缺失值先要在数据中找到缺失值代码演示。
2024-12-05 13:38:07
887
原创 数据处理与统计分析——07-Pandas的concat连接、merge()合并、多表查询、内/外/自连接查询操作
append()函数已过时, 它作用和concat()类似, 在新版的pandas中这个方法已经被删除了.merge更灵活,如果想依据行索引来合并DataFrame可以考虑使用join函数。如果名字不同, left_on 写左表字段, right_on 写右表字段.连接之后, 两张表中如果有相同名字的字段, 默认会加上后缀 默认值 _x,(3) DataFrame数据组合-join()merge()合并数据, 一对一。merge()合并数据, 一对多。df对象与df对象拼接。:查询左表所有数据,
2024-12-02 22:56:11
2080
原创 数据处理与统计分析——06-pandas加载csv数据集、DataFrame的分组聚合操作、查看文件信息的常用方法
回顾DataFrame和Series概念。
2024-11-20 22:18:57
1109
原创 数据处理与统计分析——05-Pandas中DataFrame的方法、属性、索引等一系列操作
方法是用于创建一个 Pandas DataFrame 的函数。DataFrame 是 Pandas 中的核心数据结构,类似于 Excel 中的二维表格。它。
2024-11-18 22:07:57
2475
原创 数据处理与统计分析——03-Numpy的np.dot()方法&点积与矩阵乘法
点积作用于一维向量。计算对应元素的乘积之和。结果是一个标量。,其中a和b是一维向量。矩阵乘法作用于二维矩阵。计算的是矩阵的行向量与另一矩阵的列向量的点积。结果是一个矩阵。,其中x和y是二维矩阵。
2024-11-14 21:41:18
1275
原创 数据处理与统计分析——02-Numpy的内置函数&Numpy运算&矩阵运算
它们俩之间进行 arr_a + arr_b 或 arr_a - arr_b 或 arr_a * arr_b 这样计算的前提是 shape相同。计算的时候, 位置对应的元素 进行 加减乘除的计算, 计算之后得到的结果的shape 跟arr_a /arr_b 一样。两个ndarray, 一个是arr_a 另一个是arr_b。根据矩阵乘法的定义,
2024-11-10 22:55:01
647
原创 数据处理与统计分析——01-Numpy的属性&ndarray数组创建
例如一个n排 m列的矩阵,它的shape属性将是(2,3),这个元组的长度显然是秩,即维度或者ndim属性。类似 python 的 range() ,创建一个一维 ndarray 数组。堆叠数组构成一个新的数组, 堆叠的数据需要具有相同的维度。堆叠数组构成一个新的数组, 堆叠的数据需要具有相同的维度。NumPy的数组类被称作ndarray,通常被称作数组。, 是 ndarray 的子类,只能生成 2 维的矩阵。函数zeros创建一个全是0的数组,函数ones创建一个全1的数组,
2024-11-06 20:56:45
768
原创 Python——数据结构与算法-时间复杂度&空间复杂度-链表&树状结构
程序程序 = 数据结构 + 算法概述/目的:都可以提高程序的效率(性能)数据结构指的是存储, 组织数据的方式.算法指的是为了解决实际业务问题而思考 思路和方法, 就叫: 算法.概述:为了解决实际业务问题, 而考虑出来的方法和思路, 就叫: 算法.算法具有独立性, 即: 它是解决问题的思路(思想)和方法, 不依赖于语言5大特性有输入, 需要传入1或者多个参数有输出, 需要返回1个或者多个结果有穷性, 执行一定次数循环后, 会自动终止, 不会死循环.
2024-11-03 16:06:23
2265
原创 Python入门——property()函数、装饰器、只读属性、属性验证
property提供了一种优雅的方式来控制对类属性的访问,允许我们在获取和设置属性时添加逻辑,而不改变类的外部接口。使用@property和相关的setterdeleter装饰器,可以控制属性的读、写、删操作,使得属性的访问方式更符合自然语言的表达方式。
2024-11-02 20:20:45
672
原创 Python入门——iter迭代器—__iter__()方法&__next__()方法
迭代器是一种可以记住访问位置的对象,遵循迭代器协议(__iter__()和__next__()方法)。迭代器可以高效地处理数据流,避免将整个数据集一次性加载到内存中。许多内置对象都是可迭代的,并且可以通过iter()转换为迭代器。
2024-10-30 21:55:06
775
原创 Python入门——yield生成器和iter迭代器
yield关键字让你可以创建生成器函数,用于逐步生成值,而不是一次性生成所有值。生成器可以用于高效处理大量数据或实现惰性求值。iter迭代器在 Python 中,迭代器(Iterator)是一个可以记住遍历位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完毕后结束。迭代器只能往前走,不能回退。迭代器是一种可以记住访问位置的对象,遵循迭代器协议(__iter__()和__next__()方法)。迭代器可以高效地处理数据流,避免将整个数据集一次性加载到内存中。
2024-10-27 22:14:02
1398
原创 python入门——with方法底层—上下文管理器&__enter__()和__exit__()方法
with语句用于上下文管理,它能够确保资源在使用完毕后得到正确的释放,无需手动处理清理工作。它简化了资源管理代码,并且提供了异常安全性。with广泛用于文件操作、锁操作、数据库连接等需要清理资源的场景,也可以通过实现和__exit__()方法自定义上下文管理器。
2024-10-26 22:20:22
746
原创 Python入门——多线程、多进程概括&API参数、Thread.join()、什么是线程死锁、如何避免?
详细讲解了什么是多线程、多进程及其API参数、Thread.join()、什么是线程死锁、如何避免?
2024-10-20 20:43:33
1308
原创 Python入门-面相对象——class(类)、封装、继承、多态、类型注解
本文为Python的面相对象,详细讲解了class(类)、封装、继承、多态以及类型注解
2024-10-15 22:58:35
1390
原创 Python入门-文件的操作 & file对象的常用函数(方法) & mode的访问模式
文件的常用操作以及file对象的常用函数(方法)&mode的访问模式
2024-10-04 21:50:23
1142
原创 Python入门-数据容器
本章讲解: 列表[list], 元组(tuple), 字符串(str), 集合(set), 字典(dict), 序列和切片, sorted()函数
2024-10-01 00:22:05
1078
原创 Python入门--基本数据类型和运算符简介&字符串&条件判断&循环
Python 有多种内置数据类型,每种数据类型都有其特定的用途和特性。
2024-09-27 22:00:13
1298
4
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人