C++ 滑动窗口

文章探讨了多种编程问题,涉及求解最小长度的子数组、无重复字符的子串、连续1的最大连续个数、哈希在解决字符串问题中的应用,以及如何处理窗口大小变化。展示了如何利用单调性、哈希表优化算法效率。
摘要由CSDN通过智能技术生成

例1

209. 长度最小的子数组

①窗口大小不固定

②求最小长度 -> ret = INT_MAX

③数组内的值都大于0, 符合单调性(sum  +=  nums[right] -> sum增大)

while里面符合条件,在里面更改ret

参考代码

class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int ret = INT_MAX;
        for(int left = 0, right = 0, sum = 0; right < nums.size(); right++)
        {
            sum += nums[right];
            while(sum >= target)
            {
                ret = min(ret, right - left + 1);
                sum -= nums[left++];
            }
        }
        return ret == INT_MAX ? 0 : ret;
    }
};

例2

3. 无重复字符的最长子串

while里面是不符合条件的,外面与ret比较就行

参考代码

class Solution {
public:
    int lengthOfLongestSubstring(string s) {
        int hash[128] = {0};
        int ret = 0;
        for(int left = 0, right = 0; right < s.size(); right++)
        {
            hash[s[right]]++;
            while(hash[s[right]] > 1)
            {
                hash[s[left++]]--;
            }
            ret = max(ret, right - left + 1);
        }
        return ret;
    }
};

例3

1004. 最大连续1的个数 III

[right,  left],有效闭区间

参考代码

class Solution {
public:
    int longestOnes(vector<int>& nums, int k) {
        int ret = 0;
        for(int left = 0, right = 0, zero = 0; right < nums.size(); right++)
        {
            if(nums[right] == 0) zero++;
            while(zero > k)
            {
                if(nums[left++] == 0) zero--;
            }
            ret = max(ret, right - left + 1);
        }
        return ret;
    }
};

例4

转换为求中间最大长度

如果要用注释掉的部分,就要写上target == 0,因为while(tmp >= target) 会left++,这里的==会导致left越界,所以分开写较好,把满足条件的放在外面

参考代码

class Solution {
public:
    int minOperations(vector<int>& nums, int x) {
        int sum = 0, ret = -1;
        for(auto e : nums)
            sum += e;
        int target = sum - x;
        if(target < 0) return -1;
        // if(target == 0) return nums.size();//
        for(int left = 0, right = 0, tmp = 0; right < nums.size(); right++)
        {
            tmp += nums[right];
            // while(tmp >= target)//☆☆☆☆☆
            // {
            //     if(tmp == target)
            //         ret = max(ret, right - left + 1);
            //     tmp -= nums[left++];//==的时候越界最后一次
            // }
            while(tmp > target) tmp -= nums[left++];
            if(tmp == target) ret = max(ret, right - left + 1);
        }
        return ret == -1 ? -1 : nums.size() - ret;
    }
};

例5

904. 水果成篮

后面的题都用到哈希映射

分析:哈希的临界点是从0 -> 1 和从 1 -> 0

语法:--hash[fruits[left++]] ,看括号,里面的优先,外面括号的前置“++”,“--” 往后稍稍,所以hash的索引是fruit[left],再是left自增,再是--hash[fruit[left]]

参考代码

class Solution {
public:
    int totalFruit(vector<int>& fruits) {
        int hash[100001] = {0}, ret = 0;
        for(int left = 0 ,right = 0 ,count = 0; right < fruits.size(); right++)
        {
            if(hash[fruits[right]]++ == 0) count++;
            while(count > 2)
                if(--hash[fruits[left++]] == 0) count--;
            ret = max(ret, right - left + 1);
        }
        return ret;
    }
};

例6

438. 找到字符串中所有字母异位词

分析:因为是固定窗口,所以:if(right - left + 1 > p.size())用的是if,只用右移一次left

语法分析:

①代码是全都拆开

②后置++ 和后置 -- ,在这里,两个写一起是不对的,因为右操作数例有left,:顺序是这样的:显示返回hash2[s[left],然后left++,然后hash2[s[left]]--,这时候left已经变大了1,导致左右两边left不是相同的值

③和⑤可以统一left

②③和④⑤是后置-- 和前置-- 的区别,所以判断条件也会不同。个人觉得后置的更好直接理解

参考代码

class Solution {
public:
    vector<int> findAnagrams(string s, string p) {
        vector<int> ret;
        int hash1[128] = {0}, hash2[128] = {0};
        for(auto e : p)
            hash1[e]++;
        for(int left = 0, right = 0, count = 0; right < s.size(); right++)
        {
            if(++hash2[s[right]] <= hash1[s[right]]) count++;
            if(right - left + 1 > p.size())
            {
                // if(hash2[s[left]] <= hash1[s[left]]) count--;    1
                // hash2[s[left]]--;
                // left++;

                //if(hash2[s[left++]]-- <= hash1[s[left]]) count--;不对先++ 2

                // if(hash2[s[left]]-- <= hash1[s[left]]) count--;    3
                // left++;

                //if(--hash2[s[left++]] < hash1[s[left]]) count--;//不行   4
                //这里的后缀++比前置的--优先级高
                if(--hash2[s[left]] < hash1[s[left]]) count--;    //5
                left++;

            }

            if(count == p.size())
                ret.push_back(left);
        }
        return ret;
    }
};

例7

分析:对比上题就是把字符换成了字符串,那就只能用unordered_map<string, int>,

题目说了words里面的每个元素的长度相同,次数:words[0].size()

注意 left,right = i,不是=0,不然会ret是重复的数组

对于这行代码: if(hash1.count(in) && ++hash2[in] <= hash1[in]) count++;如果hash1[in]没有这个in,那么会自己创建一个,会浪费时间,前面加上hash1.count(in)判断,可以减少时间的消耗

参考代码

class Solution {
public:
    vector<int> findSubstring(string s, vector<string>& words) {
        unordered_map<string, int> hash1;
        vector<int> ret;
        for(auto e : words)
            hash1[e]++;
        int len = words[0].size();
        for(int i = 0; i < len; i++)
        {
            unordered_map<string, int> hash2;
            for(int left = i, right = i, count = 0; right + len <= s.size(); right += len)
            {
                string in(s.substr(right, len));
                if(hash1.count(in) && ++hash2[in] <= hash1[in]) count++;
                if(right - left + len - 1>= words.size() * len)
                {
                    string out(s.substr(left, len));
                    if(hash1.count(out) && hash2[out]-- <= hash1[out]) count--;
                    left += len;
                }
                if(count == words.size())
                    ret.push_back(left);
            }       
        }
        return ret;
    }
};

例8

76. 最小覆盖子串

①ret = min(ret, right - left + 1), begin = left;

②if(right - left + 1 < ret)  {ret = right - left + 1;begin = left;}

①②两段代码是有区别的: 上面不管ret是否变化,begin就会改变

                                            下面的,ret变小了才会变化

依据上面的题目知道这里的left++是不能写在里面的

if(hash2[s[left]]-- <= hash1[s[left]]) count--;left++;

注:这里是求最小长度,那么窗口肯定是变化的,肯定是while

参考代码

class Solution {
public:
    string minWindow(string s, string t) {
        int hash1[128] = {0}, hash2[128] = {0}, ret = INT_MAX, begin = -1;
        for(auto e : t)
            hash1[e]++;
        for(int left = 0, right = 0, count = 0; right < s.size(); right++)
        {
            if(++hash2[s[right]] <= hash1[s[right]]) count++;
            
            while(count == t.size())
            {
                // ret = min(ret, right - left + 1), begin = left;
                if(right - left + 1 < ret)
                {
                    ret = right - left + 1;
                    begin = left;
                }

                if(hash2[s[left]]-- <= hash1[s[left]]) count--;
                left++;
            }
        }
        return ret == INT_MAX ? "" : s.substr(begin, ret);
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值