2024年Stable Diffusion下载+安装+使用教程(超详细版本)收藏这一篇就够了!

本篇咱们要聊的是如何用“整合包”来搞定StabIe Diffusion WebUI的本地安装和使用,别担心,你不需要成为计算机大神,新手也能轻松上手。不过得提醒一下,你的硬盘得留出100G~200G的空间来,才能玩得转。

我会把整合包放在文章的尾巴,别急,慢慢来。

首先来个前言

咱们这篇教程,就是用最新版的SD整合包,加上我搜罗来的资源,来给大家来个AI绘画的入门大揭秘,安装方法也一并奉上。打从今天开始,AI绘画,特别是SD,就像是吃了大力丸,普及度噌噌往上涨!

SD基本概念

**大模型:**这就是用素材和SD低模版本炼出来的大BOSS,直接用来生图,它就像是出图的灵魂,决定了画面的基调,格式通常是CKPT或SAFETENSORS。

**VAE:**这货就像个调色板,给大模型加点稳定剂,保持画面色彩的和谐,也是CKPT或SAFETENSORS格式。

**LoRA:**是个小巧的模型插件,能在大模型基础上炼出新风味,搭配使用,能在细节上调整风格或加点新元素。如果炼的时候用的是SD底模,那在不同大模型间切换时,兼容性杠杠的。要是专门针对某个大模型炼的,那配合起来效果绝对惊艳。

**ControlNet:**这个插件牛大了,给SD装上了火眼金睛,能从图片里抓取线条、景深这些信息,再用来处理图片。

**SD-WEBUI:**开源界的大神AUTOMATIC1111用Stability AI算法搞的软件,浏览器里点几下鼠标就能控制SD。

整合包:WEBUI部署起来网络和Python环境要求挺高,但整合包内置了隔离的Python环境和Git,不用你懂这些技术就能用。门槛低了,让更多人能轻松享受AI出图的乐趣。

一、Stable Diffusion安装步骤

咱们先得搞定启动器的运行环境,然后才能把整合包本体给解压出来。

第一步,点一下“启动器运行依赖-dotnet-6.0.11.exe”,它装一下。

img

第二步:把“sd-webui-aki-v4.zip”这个压缩包给解压了。

提醒一下: 咱们把启动器本体解压好了之后,先别急着启动它,咱们得先搞定模型的安装。

img

第三步:导入核心数据。

1、下载“推荐大模型”文件夹中的模型。

img

2、并把文件夹里的所有模型放在这个目录下:

\sd-webui-aki-v4\models\Stable-diffusion

3、同时,还要下载ControlNet模型

img

4、ControlNet模型文件夹里的所有内容,放在这个目录下:

\sd-webui-aki-v4\models\ControlNet

5、最后,需要单独下载推荐LoRA

img

二、StabIe Diffusion 使用教程

开启软件运行!
把数据解压、导入都搞定了,现在轮到启动器上场了。

1、在安装目录里,就像找宝藏一样,往下一拉,找到那个‘A启动器.exe’,双击它!

img

2、再点击右下角的一键启动

img

3、再让这个界面多跑一会儿。

img

4、就可以看到它自动在浏览器中打开了一个新的网页,就算是启动成功了。

5、最终的效果。

例如:输入一个关键词“一个美女”,点击“生成”,结果效果图如下:

img

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

Stable Diffusion是一款基于深度学习的语言模型,它通常通过云服务提供,例如Hugging Face的Hub等。由于它是开源的,如果你想在本地安装并运行它,你需要做以下步骤: 1. **下载源码**: 首先,访问Stable Diffusion的GitHub仓库(https://github.com/huggingface/stable-diffusion),克隆或下载最新版本的代码。 2. **环境配置**: 确保你的系统上已经安装了必要的依赖,如Python(推荐使用3.7+版本)、PyTorch、Transformers库以及可能需要的GPU支持(如果有的话)。可以使用pip来安装这些库。 ```bash pip install torch torchvision transformers --upgrade ``` 3. **数据准备**: 模型训练通常需要大量的文本数据,这包括预处理后的训练数据和额外的配置文件。你可以从官方提供的数据集链接下载数据,并按照说明解压和配置。 4. **搭建环境**: 如果在本地运行大模型,可能还需要设置适当的内存限制和其他资源配置。比如,在某些Linux发行版中,可能需要设置CUDA_VISIBLE_DEVICES环境变量来指定GPU。 5. **编译模型**: 进入项目目录,根据项目的readme文档,可能需要对模型进行编译或转换,以便在本地部署。 6. **训练或加载**: 根据你的需求,选择是训练一个新模型还是直接加载预训练模型。如果是训练,可能需要运行训练脚本;如果是加载,找到合适的 checkpoint 文件进行加载。 7. **运行服务**: 使用像Flask这样的web框架创建一个API,将训练好的模型集成进去,允许用户输入请求并得到响应。 8. **安全性和性能优化**: 为了保护隐私和提高效率,记得加密敏感数据,调整好批处理大小和推理频率。 **注意事项**: 在本地运行大型模型可能会消耗大量计算资源,并且涉及到的数据处理也较为复杂。如果不是专业研究者或有特定需求,一般建议使用预训练模型和云服务来获取即时的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值