一、前言
发现一个超震撼的画作。细节、清晰度和透视关系都超赞面部细节惊人!
不仅如此,作者还分享了这幅作品的 8K 版本和创作过程。下面总结了一下,作为学习笔记。
本教程是一个工作流详解,主要讲述如何在创作中,利用 Stable Diffusion 进行图像生成、图像融合、添加细节和放大的工作。
本教程适用人群:AI 全流程掌控者。
先确保已安装并熟练使用以下工具:

第一步:构思和构图
主题:描绘一个退休天狗隐居山林的形象
构图:采用竖构图,初始尺寸比例定为1152*1920px。
画面元素:背景为森林及阳光,中景为主要人物、石头和各种物品,前景为植物及土地
镜头:低视角,对焦中景,前景虚化。

第二步:背景绘制
找到森林和石头的图片素材,在 Photoshop 中进行合成,加入光线,粗略处理成想要的构图和透视角度。
使用 Stable Diffusion img2img,生成最初的背景图
注意,此时不需要在意任何画面细节。生成的图片即使有一些错误也不需要修补。

Prompt: masterpiece, best quality, low angle, depth of field, a forest with sunbeams shining through the trees, rocks laying on the ground in the foreground
第三步:人物绘制
首先需要确定人物动作。这里我在草图的基础上,用 Clip Studio Pro 中的 3D人物模型进行姿态调整。你也可以使用其他 3D Pose 类软件生成人物姿态。
然后我们需要使用 ControlNet 的 Openpose 功能,生成人物姿态。
为了控制人物的色彩,可以用一张色彩合适的图片放入 img2img 中,将 Denoising strength 调至0.9以上,作为色板使用。当然,你也可以画出基本色稿放入 img2img 中,或是使用 ControlNet Color 等插件来控制色彩。
在此过程中需要进行 img2img 反复迭代,并且适时加入背景中的森林和光线元素,以便将来合成时人物与背景更易于融合。

人物大致确定以后,使用 photoshop 进行简单融合,再使用 img2img 继续生成画面。此过程依然需要反复迭代,并配合 inpainting 和 inpainting sketch 进行调整。
至此,画面已经有了雏形。脸部角度和手都存在问题,但是不用急于修改。

Prompt: masterpiece, best quality, 1male, japanese monk, back lighting, ((rim light)), long hair, white hair, floating hair, white beard, long beard, meditation, in the forest with sunbeams shining through the trees, rocks laying on the ground in the foreground, depth of field, low angle
第四步:天狗
现在我们要让老人戴上天狗面具。由于 Stable Diffusion 没有合适的模型和 Lora 可以方便地生成天狗面具,所以我为此训练了专用 Lora。
Lora 在使用时需要使用 inpainting sketch 进行重绘,或是使用 Photoshop 剪裁并简单手绘好面具后进入 img2img 重绘。注意重绘区域要小,以免 Lora 的风格污染画面的其他元素。
绘制 Stable Diffusion 不能很好地识别和绘制的特殊物品,最直接的方法就是自制 Lora。

第五步:其他物品
延续之前的思路,在画面中一件一件添加其他物品。
方法仍然是:在画面局部使用 Photoshop 加入素材或使用 Inpaiting Sketch 绘制物体,再进行多次 img2img 迭代,得到满意的效果后,在 Photoshop 中进行融合,最后整体再使用 img2img 再次生成。
在绘制局部物体的时候,可以根据需要使用不同的模型和 Lora,而不必担心整体画风发生改变。

第六步:局部修正
修正物体:包括手、物体比例等。
修正背景:由于 AI 无法理解物体的遮挡关系,所以背景中的树木会出现错位现象,我们需要手动修复树干被遮挡后的连续性。
此时,我们已经有了完整的画面,且画面中没有明显的瑕疵。

Prompt: masterpiece, best quality, 1male, japanese monk with a tengu mask and large beads necklace, a little puppy, a katana, a gourd, back lighting, ((rim light)), long hair, white hair, white beard, long beard, meditation, (textured clothing), ultra detailed, in the forest with sunbeams shining through the trees, rocks laying on the ground in the foreground, depth of field, low angle
第七步:放大
放大有几种方法:
使用 Extra>Upscaler 进行放大 - 无法增加细节
使用 Ultimate SD upscale 放大 - 对于元素较多的复杂画面容易出现错误
使用 ControlNet Tile + Ultimate SD upscale 放大 - 同样对于复杂画面容易出现错误
所以这一次我们需要使用手动分区放大。
用 photoshop 将画面均匀裁剪成 512512px 的局部图
使用 Stable Diffusion img2img 逐一生成 19201920px 的图,
Denoising 控制在 0.39-0.49。
再针对重要的物体分别通过 img2img 进行放大生成,放大倍数为 1920/512=3.75。
在分区域放大的过程中,可以使用 ControlNet 和 Ultimate SD upscaler,增加更多细节。

最后,使用 Photoshop 将所有放大后的局部图进行拼合,精修,调色。
至此,所有工作就完成了!来看看最终效果。

结语
Stable Diffusion 等 AI 绘图工具,目前还无法应对有元素丰富的复杂画面。特别是对画面有精确要求的时候,使用单一的 img2img 不能生成令人满意的效果。
本工作流的核心在于,每一个环节只让AI做一件事,提升 AI 对指令的精确理解。此外,这个工作流与传统绘画中“从整体到局部”的流程相似,对于习惯于手绘的画师比较友好。另外,由于90%的工作由作者本人把控,AI 并没有过多的自由发挥,对作者而言,这体现了创作的本质。
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
对于0基础小白入门:
如果你是零基础小白,想快速入门AI绘画是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
1.stable diffusion安装包 (全套教程文末领取哈)
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。
最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。

2.stable diffusion视频合集
我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

3.stable diffusion模型下载
stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

4.stable diffusion提示词
提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

5.AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

768

被折叠的 条评论
为什么被折叠?



