两个月前,LangChain发布了DeepAgents,专为构建能处理复杂多步骤任务的智能体而生。该库基于LangGraph架构,受Claude Code、Deep Research及Manus等前沿应用的启发,所构建的深度智能体原生具备规划能力、用于上下文管理的文件系统,以及调度子智能体的完整功能体系。
该产品自推出以来获得热烈反响,如今其0.2版本也正式发布,包括一项重要更新:"后端"抽象,可以将使用的文件系统从本地切换到远程虚拟机、数据库或任何其他系统。
本文将为大家详细介绍DeepAgent 0.2的更新内容,新版后端的使用方法,以及LangChain、LangGraph、DeepAgents的不同定位,助力开发者更高效地构建智能体应用。

-
LangChain官方博客地址:
https://blog.langchain.com/doubling-down-on-deepagents/
-
Github地址:
https://github.com/langchain-ai/deepagents
一、更新内容
1、可插拔后端(Pluggable Backends)
0.2版本的主要新增功能在于可插拔后端。此前DeepAgents访问的"文件系统"仅为"虚拟文件系统",其通过LangGraph状态来存储文件。
新版本引入了全新抽象,允许将任意存储方案作为"文件系统"接入。内置实现包括:
- LangGraph状态存储
- LangGraph跨线程持久化存储
- 本地文件系统
研究团队还创新性地推出了复合后端(composite backend)。可以先有一个基础后端(如本地文件系统),然后在其之上的特定子目录中映射其他后端。
例如为实现长期记忆功能,可以配置本地文件系统为基础后端,但将/memories/目录下的所有文件操作映射至基于S3的虚拟文件系统,使得智能体存储的内容能够突破本地计算机限制实现持久化。
开发者还可以编写自定义后端,以在任意数据库或数据存储上创建一个“虚拟文件系统”。同时支持通过继承现有后端,实现文件写入权限控制、文件格式校验等安全防护功能。
2、其他升级特性
本次0.2版本还包含一系列功能增强:
- **大型工具结果回收:**当工具调用结果超出预设的token数量限制时,自动将其转储至文件系统
- **对话历史总结:**在对话token使用量过大时,自动对历史对话记录进行压缩
- **工具调用修复:**当工具调用在执行前被中断或取消时,自动修复消息历史,确保一致性
大家纷纷表示,此次更新让DeepAgents更灵活和适合生产了。



二、DeepAgents vs LangChain
vs LangGraph
DeepAgents已是LangChain团队的第三个开源库。许多开发者可能会好奇:究竟该如何在DeepAgents、LangChain与LangGraph之间做出选择?对此,LangChain团队强调,三者各有清晰应用场景和定位。
- LangGraph:定位为智能体运行时(Agent Runtime),适用于构建工作流与智能体相结合的应用
- LangChain:定位为智能体框架(Agent Framework),适合想使用核心智能体循环逻辑而不依赖任何内置功能,并从零开始构建所有提示词和工具的场景
- DeepAgents:定位为智能体工具包(Agent Harness),专为构建更加自主的长期运行智能体而设计,可使用内置功能(如规划工具、文件系统等)

三者构成递进式技术栈:DeepAgents基于LangChain的智能体抽象层构建,而LangChain又依托于LangGraph的智能体运行时环境。

三、如何使用
下面将详细讲解本次更新中各后端的使用方法。
(如果想了解完整deepagent构建流程,可以参考以下链接:https://docs.langchain.com/oss/python/deepagents/overview)
1、内置后端
(1)StateBackend(临时)
# 默认情况下提供一个状态后端
agent = create_deep_agent()
智能体的默认文件系统后端存储在LangGraph状态中。注意此文件系统仅在单个线程持续。
适用于:
- 作为智能体的临时草稿本,用于写入中间结果
- 当工具返回的结果太大时,系统会自动将结果写入文件,智能体可以分段读取回这些内容
(2)FilesystemBackend(本地磁盘)
from deepagents.backends import FilesystemBackend
agent = create_deep_agent(
backend=FilesystemBackend(root_dir="/Users/nh/Desktop/")
)
这种方法可以:
- 在可配置的root_dir目录下读写真实文件(root_dir必须是一个绝对路径!)
- 可选设置virtual_mode=True来沙箱化路径并将其规范限制在root_dir下
- 使用安全的路径解析,尽可能防止不安全的符号链接遍历,支持使用ripgrep工具来加速文件内容搜索
适用于:
- 本地机器上的项目
- CI(持续集成)沙箱环境
- 挂载的持久化存储卷
(3)StoreBackend (LangGraph Store)
from deepagents.backends import StoreBackend
agent = create_deep_agent(
backend=(lambda rt: StoreBackend(rt)) # Note that the tools access Store through the runtime.store
)
这种方法将文件存储在运行时提供的LangGraph BaseStore中,实现跨线程的持久化存储。
适用于:
- 当已配置并运行LangGraph存储时(例如使用Redis、Postgres或基于BaseStore的云端实现)
- 当通过LangSmith Deployments部署智能体时(会自动为智能体配置存储空间)
(4)CompositeBackend(路由)
from deepagents import create_deep_agent
from deepagents.backends import FilesystemBackend
from deepagents.backends.composite import build_composite_state_backend
composite_backend = lambda rt: CompositeBackend(
# 默认后端:使用 StateBackend(临时存储,仅在当前线程中持久化)
default=StateBackend(rt)
routes={
# /memories/ 路径下的文件使用 StoreBackend(跨线程持久化存储)
"/memories/": StoreBackend(rt),
# /docs/ 路径下的文件使用自定义后端
"/docs/": CustomBackend()
}
)
agent = create_deep_agent(backend=composite_backend)
这种方法会根据路径前缀将文件操作路由到不同的存储后端,并在目录列表和搜索结果中保留原始的路径前缀结构(如/memories/agent.md)。通常用于持久化/memories/*并保持其他所有内容的临时性。
适用于:
- 当希望为智能体同时提供临时存储和跨线程持久化存储时,CompositeBackend允许同时配置StateBackend和StoreBackend
- 当有多个信息源需要作为统一文件系统提供给智能体时。例如:将长期记忆存储在/memories/路径下的某个存储中,同时通过自定义后端使文档资料可在/docs/路径下访问
注意:
- 较长路径前缀具有更高优先级(例如,路由 “/memories/projects/”:FilesystemBackend(…)可以覆盖"/memories/": StoreBackend(rt))
- 对于 StoreBackend 路由,确保智能体运行时提供了存储实例(StoreBackend依赖runtime.store来存储和检索数据)
2、使用虚拟文件系统
构建自定义后端,将远程或数据库文件系统(如 S3 或 Postgres)映射到工具命名空间中。
设计指南:
- 路径采用绝对路径格式(/x/y.txt)。需确定如何将其映射到存储键/行
- 高效实现 ls_info 和 glob_info 方法(优先使用服务端列表功能,否则使用本地过滤)
- 对于文件不存在或无效正则模式的情况,返回用户可读的错误信息
- 如需外部持久化,在结果中设置files_update=None;仅状态后端应返回files_update字典
如S3风格自定义后端框架:
from deepagents.backends.protocol import BackendProtocol, WriteResult, EditResult
from deepagents.backends.utils import FileInfo, GrepMatch
class S3Backend(BackendProtocol):
def __init__(self, bucket: str, prefix: str = ""):
self.bucket = bucket
self.prefix = prefix.rstrip("/")
def _key(self, path: str) -> str:
return f"{self.prefix}{path}"
def ls_info(self, path: str) -> list[FileInfo]:
# List objects under _key(path); build FileInfo entries(path, size, modified_at)
...
def read(self, file_path: str, offset: int = 0, limit: int = 2000) -> str:
# Fetch object; return numbered content or an error string
...
def grep_raw(self, pattern: str, path: str | None = None, glob: str | None = None) -> list[GrepMatch] | str:
# Optionally filter server‑side; elselistand scan content
...
def glob_info(self, pattern: str, path: str = "/") -> list[FileInfo]:
# Apply glob relative to path across keys
...
def write(self, file_path: str, content: str) -> WriteResult:
# Enforce create‑only semantics; return WriteResult(path=file_path, files_update=None)
...
def edit(self, file_path: str, old_string: str, new_string: str, replace_all: bool = False) -> EditResult:
# Read → replace (respect uniqueness vs replace_all) → write → return occurrences
...
这次DeepAgents 0.2版本的更新,尤其是可插拔后端的构建,解决了先前版本的存储限制,引入多元化的存储方案,极大地增强了智能体构建的灵活性与可扩展性。为开发者构建能够持久运行、具备长期记忆的真正自主智能体,奠定了坚实的技术基础。
最后
我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。
我整理出这套 AI 大模型突围资料包:
- ✅AI大模型学习路线图
- ✅Agent行业报告
- ✅100集大模型视频教程
- ✅大模型书籍PDF
- ✅DeepSeek教程
- ✅AI产品经理入门资料
如果你也想通过学大模型技术去帮助自己升职和加薪,可以扫描下方链接👇👇

为什么说现在普通人就业/升职加薪的首选是AI大模型?
人工智能技术的爆发式增长,正以不可逆转之势重塑就业市场版图。从DeepSeek等国产大模型引发的科技圈热议,到全国两会关于AI产业发展的政策聚焦,再到招聘会上排起的长队,AI的热度已从技术领域渗透到就业市场的每一个角落。

智联招聘的最新数据给出了最直观的印证:2025年2月,AI领域求职人数同比增幅突破200% ,远超其他行业平均水平;整个人工智能行业的求职增速达到33.4%,位居各行业榜首,其中人工智能工程师岗位的求职热度更是飙升69.6%。
AI产业的快速扩张,也让人才供需矛盾愈发突出。麦肯锡报告明确预测,到2030年中国AI专业人才需求将达600万人,人才缺口可能高达400万人,这一缺口不仅存在于核心技术领域,更蔓延至产业应用的各个环节。


资料包有什么?
①从入门到精通的全套视频教程
包含提示词工程、RAG、Agent等技术点

② AI大模型学习路线图(还有视频解说)
全过程AI大模型学习路线

③学习电子书籍和技术文档
市面上的大模型书籍确实太多了,这些是我精选出来的

④各大厂大模型面试题目详解

⑤ 这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
所有的视频教程由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。


智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势,构建起"前沿课程+智能实训+精准就业"的高效培养体系。
课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!


如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!
应届毕业生:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能 突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓**

3884

被折叠的 条评论
为什么被折叠?



