11.6学习日志 PySimpleGUI 是一个用于简化 GUI 编程的 Python 包,它封装了多种底层 GUI 框架(如 tkinter、Qt、WxPython 等),提供了简单易用的 API。PySimpleGUI 包含了大量的控件(也称为小部件或组件),这些控件可以帮助你快速构建用户界面。
11.5学习日志 是一个非常流行的 Python 库,专门用于人脸识别任务。它基于 dlib 库和 HOG(Histogram of Oriented Gradients)特征以及深度学习模型,提供了简单易用的接口来进行人脸检测、面部特征点定位和人脸识别。库由 Adam Geitgey 开发,旨在简化人脸识别任务,使其更加容易上手。主要功能人脸检测检测图像中的人脸位置。支持使用 HOG 特征或 CNN(卷积神经网络)进行人脸检测。面部特征点定位检测人脸上的关键特征点(如眼睛、鼻子、嘴巴等)。人脸识别。
11.1学习日志 方便图像处理:在不同的颜色空间中,对应的通道代表了不同的属性,例如在RGB空间中,红、绿、蓝三个通道分别代表了颜色的强度,而在HSV空间中,H(色相)代表了颜色的种类,S(饱和度)代表了颜色的深浅,V(亮度)代表了颜色的明暗。这个函数主要用于图像的旋转变换。它可以将一个图像从一个颜色空间转换为另一个颜色空间,比如从RGB到灰度图像的转换,或者从BGR到HSV的转换等。将灰度图像转换为二值图像,根据指定的阈值将像素值分为两类:高于阈值的像素设为一个值(通常是255),低于阈值的像素设为另一个值(通常是0)。
10.31学习日志 OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。OpenCV的全称是Open Source Computer Vision Library,是一个开放源代码的计算机视觉库OpenCV最初由英特尔公司发起并开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用,现在美国Willow Garage为OpenCV提供主要的支持OpenCV可用于开发实时的图像处理,计算机视觉以及模式识别程序,目前在工业界以及科研领域广泛采用。
10.29学习日志 一个.py 文件就是一个模块模块是含有一系列数据函数类等的程序作用把相关功能的函数等放在一起有利于管理,有利于多人合作开发模块的分类内置模块(在python3 程序内部,可以直接使用)标准库模块(在python3 安装完后就可以使用的 )第三方模块(需要下载安装后才能使用)自定义模块(用户自己编写)模块名如果要给别的程序导入,则模块名必须是 标识符。
10.25学习日志 重置索引(reindex)可以更改原 DataFrame 的行标签或列标签,并使更改后的行、列标签与 DataFrame 中的数据逐一匹配。reindex_like 方法用于将一个 DataFrame 或 Series 的索引重新排列,使其与另一个 DataFrame 或 Series 的索引相匹配。如果在重新索引的过程中,新的索引与原始索引不完全匹配,那么不匹配的位置将会被填充为 NaN 值。squeeze:布尔值,如果为 True,并且分组结果返回一个元素,则返回该元素而不是单列 DataFrame。
10.24学习日志 Pandas 是一个开源的第三方 Python 库,从 Numpy 和 Matplotlib 的基础上构建而来Pandas 名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)Pandas 已经成为 Python 数据分析的必备高级工具,它的目标是成为强大、灵活、可以支持任何编程语言的数据分析工具Pandas 是 Python 语言的一个扩展程序库,用于数据分析。
10.23学习日志 Matplotlib 库:是一款用于数据可视化的 Python 软件包,支持跨平台运行,它能够根据 NumPy ndarray 数组来绘制 2D 图像,它使用简单、代码清晰易懂Figure:指整个图形,您可以把它理解成一张画布,它包括了所有的元素,比如标题、轴线等Axes:绘制 2D 图像的实际区域,也称为轴域区,或者绘图区Axis:指坐标系中的垂直轴与水平轴,包含轴的长度大小(图中轴长为 7)、轴标签(指 x 轴,y轴)和刻度标签。
10.21学习日志-Numpy NumPy 的全称是“ Numeric Python”,它是 Python 的第三方扩展包,主要用来计算、处理一维或多维数组在数组算术计算方面, NumPy 提供了大量的数学函数NumPy 的底层主要用 C语言编写,因此它能够高速地执行数值计算NumPy 还提供了多种数据结构,这些数据结构能够非常契合的应用在数组和矩阵的运算上。
10.17学习日志 类是创建对象的 ”模板”。数据成员:表明事物的特征。相当于变量方法成员:表明事物的功能。相当于函数通过class关键字定义类。类的创建语句语法:class 类名 (继承列表):实例属性(类内的变量) 定义实例方法(类内的函数method) 定义类变量(class variable) 定义类方法(@classmethod) 定义静态方法(@staticmethod) 定义类的创建的说明:类名必须为标识符(与变量的命名相同,建议首字母大写)类名实质上就是变量,它绑定一个类。
10.16学习日志 语法def 函数名(形参名1=默认实参1, 形参名2=默认实参2, ... ):语句块说明缺省参数即默认实参,必须自右向左依次存在(即,如果一个参数有缺省参数,则其右侧的所有参数都必须有缺省参数)位置形参星号元组形参(*args)命名关键字形参双星号字典形参(**kwargs)一个变量声明以后,在哪里能够被访问使用,就是这个变量"起作用"的区域:也就是这个变量的作用域一般来说,变量的作用域,是在函数内部和外部的区域 来体现,因此常常与函数有关函数定义(创建)
10.14学习日志 几何定义:向量是一个有方向和大小的量,通常用箭头表示。向量的起点称为原点,终点称为向量的端点。代数定义:向量是一个有序的数组,通常表示为列向量或行向量。例如,一个 n 维列向量可以表示为:一个 n 维行向量可以表示为:其中 v1,v2,…,vn是向量的分量。行向量和列向量再本质上没有区别。向量的表示几何表示:在二维或三维空间中,向量通常用箭头表示,箭头的方向表示向量的方向,箭头的长度表示向量的大小。代数表示:向量可以用列向量或行向量表示,如上所述。坐标表示:在二维或三维空间中,向量可以用坐标表示。
10.12学习日志 对于两个随机变量 X 和 Y,它们的协方差定义为:其中 EX 和 EY 分别是 X 和 Y 的期望值。行列式是一个数学概念,主要用于线性代数中,它是一个可以从方阵(即行数和列数相等的矩阵)形成的一个标量(即一个单一的数值)。以3阶行列式为例:从上述公式可以看出:3阶行列式按行展开后为6项,每项为3个不同行不同列的3个元素相乘aij元素的行标i都是123的自然排列aij元素列标j则为:123、231、312、321、213、132,总数为3!
10.10学习日志 随机变量是一个从样本空间(所有可能结果的集合)到实数集的函数。样本空间中的每个结果都对应于随机变量的一个值。随机变量的值可以是离散的,也可以是连续的。随机变量通常用大写字母表示,如 X、Y 或 Z。随机变量和事件的联系定义事件事件可以定义为随机变量取特定值的集合。一般用{X=?}表示。例如,如果随机变量 X 表示掷骰子的结果,那么事件 "掷得奇数" 可以表示为 {X=1} 或 {X=3}或 {X=5}。使用随机变量描述事件随机变量的值可以定义复杂的事件。
10.9学习日志 定积分表示函数 f(x)在区间 [a,b]上的累积效应或面积。分割区间: 将区间 [a,b]分割成 n 个小区间,每个小区间的长度为 Δxi,其中,且 x0=a,xn=b。取样本点: 在每个小区间内取一个样本点 ξi。构造黎曼和: 构造黎曼和,表示函数 f(x) 在区间 [a,b]上的近似累积效应或面积。取极限: 当分割的区间数 n 趋向于无穷大,且每个小区间的长度 Δxi趋向于零时,黎曼和的极限即为定积分:说明:黎曼和是通过将区间 [a,b]分成 n 个等宽的子区间,每个子区间的宽度为。