Bert-VITS2-ext: 突破TTS边界的创新尝试
在人工智能和计算机图形学快速发展的今天,如何让合成的语音更具表现力、更接近真人已成为一个热门的研究方向。Bert-VITS2-ext项目正是在这一背景下应运而生,它基于优秀的开源TTS系统Bert-VITS2,进一步拓展了语音合成的边界,实现了语音、表情和动画的协同生成。这一创新不仅提升了合成语音的自然度,还为虚拟主播、数字人等应用场景提供了新的可能性。
项目概述与目标
Bert-VITS2-ext项目由GitHub用户see2023发起,其核心目标是在Bert-VITS2的基础上,实现TTS(文本到语音转换)的同时生成匹配的脸部表情数据。这一扩展极大地丰富了合成语音的表现力,使其不再局限于单一的音频输出,而是能够提供更加全面的多模态表达。
项目的主要特点包括:
- 基于Bert-VITS2 v2.3 Final Release版本进行开发
- 实现了语音合成与表情生成的同步输出
- 支持将生成的表情数据应用于3D角色模型(如MetaHuman)
- 提供了从音频到表情的转换功能
- 探索了与MotionGPT等项目的结合,实现全身动画生成
技术原理与实现方法
Bert-VITS2-ext的核心思想是在保持原有TTS网络结构不变的基础上,通过增加旁路输出来生成表情数据。具体实现步骤如下:
-
网络结构扩展:
- 在VITS网络的文本编码和解码之间,获取隐变量z
- 冻结原TTS网络参数,增加LSTM和MLP层处理隐变量z
- 新增的网络结构完成从z到表情数据的序列到序列(seq2seq)生成与映射
-
数据采集与预处理:
- 使用Live Link Face采集真人说话时的表情数据
- 同步录制语音和对应的表情值
- 利用后验编码器将音频编码为隐变量z
- 生成训练和验证用的文件列表
-
模型训练:
- 在train_ms.py脚本中添加--visemes参数,区分表情模型的训练
- 使用预处理后的数据进行模型训练
-
推理与应用:
- 在webui.py中集成表情生成功能
- 输出音频、隐变量和动画数据
- 提供tts2ue.py脚本用于查看生成效果
实际应用效果展示
Bert-VITS2-ext项目的实际效果令人印象深刻。开发者通过多个演示视频展示了项目的应用潜力:
-
基础TTS与表情同步: 在哔哩哔哩和YouTube上发布的演示视频中,展示了合成语音与生成表情的同步效果。这一功能为虚拟主播和数字人应用提供了重要支持。
-
与MetaHuman结合: 项目成功将TTS生成的表情数据应用于Unreal Engine的MetaHuman角色模型上,实现了高度逼真的数字人表情动画。
-
歌声表情生成: 系统不仅能处理普通语音,还能根据歌声生成匹配的表情,这为虚拟歌手和音乐视频制作提供了新的可能性。
-
与Azure TTS对比: 开发者还将项目生成的表情与Azure TTS的表情输出进行了对比,展示了Bert-VITS2-ext在表情自然度和丰富度上的优势。
扩展应用与未来展望
Bert-VITS2-ext项目的创新性不仅体现在其核心功能上,还体现在其与其他技术的结合和扩展应用上:
-
CosyVoice集成: 项目成功将表情生成功能扩展到CosyVoice系统中,进一步验证了其技术的通用性和可移植性。
-
GPT-SoVITS整合: 尽管直接在GPT-SoVITS上重新训练的效果不佳,但开发者通过复用Bert-VITS2-ext的后验部分和表情生成模型,成功实现了在GPT-SoVITS中的表情生成功能。这一尝试为不同TTS系统间的功能迁移提供了宝贵经验。
-
声音到表情的转换: 项目提供了将现有音频转换为表情数据的功能,这为已有音频内容的表情重现开辟了新的途径。
-
全身动画生成探索: 通过与MotionGPT项目的结合,Bert-VITS2-ext尝试了从语音和表情生成全身动画的可能性。尽管目前还存在一些限制(如语言理解和骨骼动画映射的问题),但这一探索为未来更全面的多模态内容生成指明了方向。
-
Audio2PhotoReal整合: 项目还尝试了与Audio2PhotoReal的结合,实现了从Web界面直接导出动画数据的功能,为实际应用提供了更多便利。
技术挑战与解决方案
在Bert-VITS2-ext的开发过程中,团队遇到并解决了多个技术挑战:
-
数据同步问题: 在采集语音和表情数据时,可能存在时间偏移。开发者通过对比验证集损失,找到了同一数据源的最佳偏移位置,确保了训练数据的质量。
-
模型参数优化: 为了不影响原TTS模型的性能,项目采用了冻结原网络参数,单独训练表情生成部分的策略。这种方法既保证了语音质量,又实现了表情生成功能。
-
跨模态映射: 从语音隐变量到表情数据的映射是一个复杂的跨模态问题。项目通过设计合适的LSTM和MLP网络结构,成功实现了这一映射。
-
实时性能优化: 考虑到实际应用中的实时性要求,项目在设计时充分考虑了计算效率,确保表情生成不会显著增加系统延迟。
开源社区与未来发展
Bert-VITS2-ext作为一个开源项目,其发展离不开社区的支持和贡献。项目在GitHub上获得了超过500颗星的关注,这充分说明了其在TTS和计算机图形学领域的影响力。
未来,项目计划在以下几个方向继续发力:
- 提高表情生成的精确度和自然度
- 探索更多的跨模态生成可能性,如结合文本内容理解
- 优化全身动画生成的效果,提高与语音内容的同步性
- 拓展对更多语言和口音的支持
- 改进模型的训练效率和推理速度
结语
Bert-VITS2-ext项目为TTS技术的应用开辟了新的方向。通过实现语音、表情和动画的协同生成,它不仅提升了合成内容的表现力和自然度,还为虚拟主播、数字人等新兴应用领域提供了强有力的技术支持。随着项目的不断发展和完善,我们有理由期待它在未来能够为更多创新应用提供可能性,推动人机交互和数字内容创作领域的进步。

图1: Bert-VITS2-ext的网络结构示意图
通过这个创新性的项目,我们看到了AI技术在多模态内容生成领域的巨大潜力。Bert-VITS2-ext不仅是一个技术探索,更是一个面向未来的尝试,它为数字内容创作、虚拟现实和增强现实等领域提供了新的可能性。随着技术的不断进步和社区的持续贡献,我们期待看到更多基于此项目的创新应用,为人机交互和数字体验带来革命性的变革。
文章链接:www.dongaigc.com/a/bert-vits2-expression-animation
https://www.dongaigc.com/a/bert-vits2-expression-animation
2万+

被折叠的 条评论
为什么被折叠?



