整数规划中的割平面法:算法原理与实现

整数规划中的割平面法:算法原理与实现

1. 引言

割平面法(Cutting Plane Method)是求解整数规划问题的一种重要方法。它通过不断向问题中添加新的约束(割平面),逐步将线性规划的可行域收缩到整数可行域,最终得到整数最优解。本文将深入探讨割平面法的原理、实现和应用。

2. 理论基础

2.1 整数规划问题

标准形式的整数线性规划问题可以表示为:

最小化:
z = ∑ j = 1 n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值