算法系列15天速成——第十三天 树操作【下】

今天说下最后一种树,大家可否知道,文件压缩程序里面的核心结构,核心算法是什么?或许你知道,他就运用了赫夫曼树。

听说赫夫曼胜过了他的导师,被认为”青出于蓝而胜于蓝“,这句话也是我比较欣赏的,嘻嘻。

 

一  概念

    了解”赫夫曼树“之前,几个必须要知道的专业名词可要熟练记住啊。

 

    1: 结点的权

            “权”就相当于“重要度”,我们形象的用一个具体的数字来表示,然后通过数字的大小来决定谁重要,谁不重要。

    2: 路径

             树中从“一个结点"到“另一个结点“之间的分支。

    3: 路径长度

             一个路径上的分支数量。

    4: 树的路径长度

             从树的根节点到每个节点的路径长度之和。

    5: 节点的带权路径路劲长度

             其实也就是该节点到根结点的路径长度*该节点的权。

    6:   树的带权路径长度

             树中各个叶节点的路径长度*该叶节点的权的和,常用WPL(Weight Path Length)表示。

 

二: 构建赫夫曼树

        上面说了那么多,肯定是为下面做铺垫,这里说赫夫曼树,肯定是要说赫夫曼树咋好咋好,赫夫曼树是一种最优二叉树,

         因为他的WPL是最短的,何以见得?我们可以上图说话。

   

现在我们做一个WPL的对比:

图A: WPL= 5*2 + 7*2 +2*2+13*2=54

图B:WPL=5*3+2*3+7*2+13*1=48

 

我们对比一下,图B的WPL最短的,地球人已不能阻止WPL还能比“图B”的小,所以,“图B"就是一颗赫夫曼树,那么大家肯定

要问,如何构建一颗赫夫曼树,还是上图说话。

 

第一步: 我们将所有的节点都作为独根结点。

第二步:   我们将最小的C和A组建为一个新的二叉树,权值为左右结点之和。

第三步: 将上一步组建的新节点加入到剩下的节点中,排除上一步组建过的左右子树,我们选中B组建新的二叉树,然后取权值。

第四步: 同上。

 

三: 赫夫曼编码

      大家都知道,字符,汉字,数字在计算机中都是以0,1来表示的,相应的存储都是有一套编码方案来支撑的,比如ASC码。

 这样才能在"编码“和”解码“的过程中不会成为乱码,但是ASC码不理想的地方就是等长的,其实我们都想用较少的空间来存储

更多的东西,那么我们就要采用”不等长”的编码方案来存储,那么“何为不等长呢“?其实也就是出现次数比较多的字符我们采用短编码,

出现次数较少的字符我们采用长编码,恰好,“赫夫曼编码“就是不等长的编码。

    这里大家只要掌握赫夫曼树的编码规则:左子树为0,右子树为1,对应的编码后的规则是:从根节点到子节点

A: 111

B: 10

C: 110

D: 0

 

四: 实现

      不知道大家懂了没有,不懂的话多看几篇,下面说下赫夫曼的具体实现。

         第一步:构建赫夫曼树。

         第二步:对赫夫曼树进行编码。

         第三步:压缩操作。

         第四步:解压操作。

 

1:首先看下赫夫曼树的结构,这里字段的含义就不解释了。

复制代码
 1 #region 赫夫曼树结构
 2     /// <summary>
 3 /// 赫夫曼树结构
 4 /// </summary>
 5     public class HuffmanTree
 6     {
 7         public int weight { get; set; }
 8 
 9         public int parent { get; set; }
10 
11         public int left { get; set; }
12 
13         public int right { get; set; }
14     }
15     #endregion
复制代码

 

2: 创建赫夫曼树,原理在上面已经解释过了,就是一步一步的向上搭建,这里要注意的二个性质定理:

         当叶子节点为N个,则需要N-1步就能搭建赫夫曼树。

         当叶子节点为N个,则赫夫曼树的节点总数为:(2*N)-1个。

复制代码
  1 #region 赫夫曼树的创建
  2         /// <summary>
  3 /// 赫夫曼树的创建
  4 /// </summary>
  5 /// <param name="huffman">赫夫曼树</param>
  6 /// <param name="leafNum">叶子节点</param>
  7 /// <param name="weight">节点权重</param>
  8         public HuffmanTree[] CreateTree(HuffmanTree[] huffman, int leafNum, int[] weight)
  9         {
 10             //赫夫曼树的节点总数
 11             int huffmanNode = 2 * leafNum - 1;
 12 
 13             //初始化节点,赋予叶子节点值
 14             for (int i = 0; i < huffmanNode; i++)
 15             {
 16                 if (i < leafNum)
 17                 {
 18                     huffman[i].weight = weight[i];
 19                 }
 20             }
 21 
 22             //这里面也要注意,4个节点,其实只要3步就可以构造赫夫曼树
 23             for (int i = leafNum; i < huffmanNode; i++)
 24             {
 25                 int minIndex1;
 26                 int minIndex2;
 27                 SelectNode(huffman, i, out minIndex1, out minIndex2);
 28 
 29                 //最后得出minIndex1和minindex2中实体的weight最小
 30                 huffman[minIndex1].parent = i;
 31                 huffman[minIndex2].parent = i;
 32 
 33                 huffman[i].left = minIndex1;
 34                 huffman[i].right = minIndex2;
 35 
 36                 huffman[i].weight = huffman[minIndex1].weight + huffman[minIndex2].weight;
 37             }
 38 
 39             return huffman;
 40         }
 41         #endregion
 42 
 43         #region 选出叶子节点中最小的二个节点
 44         /// <summary>
 45 /// 选出叶子节点中最小的二个节点
 46 /// </summary>
 47 /// <param name="huffman"></param>
 48 /// <param name="searchNodes">要查找的结点数</param>
 49 /// <param name="minIndex1"></param>
 50 /// <param name="minIndex2"></param>
 51         public void SelectNode(HuffmanTree[] huffman, int searchNodes, out int minIndex1, out int minIndex2)
 52         {
 53             HuffmanTree minNode1 = null;
 54 
 55             HuffmanTree minNode2 = null;
 56 
 57             //最小节点在赫夫曼树中的下标
 58             minIndex1 = minIndex2 = 0;
 59 
 60             //查找范围
 61             for (int i = 0; i < searchNodes; i++)
 62             {
 63                 ///只有独根树才能进入查找范围
 64                 if (huffman[i].parent == 0)
 65                 {
 66                     //如果为null,则认为当前实体为最小
 67                     if (minNode1 == null)
 68                     {
 69                         minIndex1 = i;
 70 
 71                         minNode1 = huffman[i];
 72 
 73                         continue;
 74                     }
 75 
 76                     //如果为null,则认为当前实体为最小
 77                     if (minNode2 == null)
 78                     {
 79                         minIndex2 = i;
 80 
 81                         minNode2 = huffman[i];
 82 
 83                         //交换一个位置,保证minIndex1为最小,为后面判断做准备
 84                         if (minNode1.weight > minNode2.weight)
 85                         {
 86                             //节点交换
 87                             var temp = minNode1;
 88                             minNode1 = minNode2;
 89                             minNode2 = temp;
 90 
 91                             //下标交换
 92                             var tempIndex = minIndex1;
 93                             minIndex1 = minIndex2;
 94                             minIndex2 = tempIndex;
 95 
 96                             continue;
 97                         }
 98                     }
 99                     if (minNode1 != null && minNode2 != null)
100                     {
101                         if (huffman[i].weight <= minNode1.weight)
102                         {
103                             //将min1临时转存给min2
104                             minNode2 = minNode1;
105                             minNode1 = huffman[i];
106 
107                             //记录在数组中的下标
108                             minIndex2 = minIndex1;
109                             minIndex1 = i;
110                         }
111                         else
112                         {
113                             if (huffman[i].weight < minNode2.weight)
114                             {
115                                 minNode2 = huffman[i];
116 
117                                 minIndex2 = i;
118                             }
119                         }
120                     }
121                 }
122             }
123         }
124         #endregion
复制代码


3:对哈夫曼树进行编码操作,形成一套“模板”,效果跟ASC模板一样,不过一个是不等长,一个是等长。

复制代码
 1 #region 赫夫曼编码
 2         /// <summary>
 3 /// 赫夫曼编码
 4 /// </summary>
 5 /// <param name="huffman"></param>
 6 /// <param name="leafNum"></param>
 7 /// <param name="huffmanCode"></param>
 8         public string[] HuffmanCoding(HuffmanTree[] huffman, int leafNum)
 9         {
10             int current = 0;
11 
12             int parent = 0;
13 
14             string[] huffmanCode = new string[leafNum];
15 
16             //四个叶子节点的循环
17             for (int i = 0; i < leafNum; i++)
18             {
19                 //单个字符的编码串
20                 string codeTemp = string.Empty;
21 
22                 current = i;
23 
24                 //第一次获取最左节点
25                 parent = huffman[current].parent;
26 
27                 while (parent != 0)
28                 {
29                     //如果父节点的左子树等于当前节点就标记为0
30                     if (current == huffman[parent].left)
31                         codeTemp += "0";
32                     else
33                         codeTemp += "1";
34 
35                     current = parent;
36                     parent = huffman[parent].parent;
37                 }
38 
39                 huffmanCode[i] = new string(codeTemp.Reverse().ToArray());
40             }
41             return huffmanCode;
42         }
43         #endregion
复制代码


4:模板生成好了,我们就要对指定的测试数据进行压缩处理

复制代码
 1 #region 对指定字符进行压缩
 2         /// <summary>
 3 /// 对指定字符进行压缩
 4 /// </summary>
 5 /// <param name="huffmanCode"></param>
 6 /// <param name="alphabet"></param>
 7 /// <param name="test"></param>
 8         public string Encode(string[] huffmanCode, string[] alphabet, string test)
 9         {
10             //返回的0,1代码
11             string encodeStr = string.Empty;
12 
13             //对每个字符进行编码
14             for (int i = 0; i < test.Length; i++)
15             {
16                 //在模版里面查找
17                 for (int j = 0; j < alphabet.Length; j++)
18                 {
19                     if (test[i].ToString() == alphabet[j])
20                     {
21                         encodeStr += huffmanCode[j];
22                     }
23                 }
24             }
25 
26             return encodeStr;
27         }
28         #endregion
复制代码

 

5: 最后也就是对压缩的数据进行还原操作。

复制代码
 1 #region 对指定的二进制进行解压
 2         /// <summary>
 3 /// 对指定的二进制进行解压
 4 /// </summary>
 5 /// <param name="huffman"></param>
 6 /// <param name="leafNum"></param>
 7 /// <param name="alphabet"></param>
 8 /// <param name="test"></param>
 9 /// <returns></returns>
10         public string Decode(HuffmanTree[] huffman, int huffmanNodes, string[] alphabet, string test)
11         {
12             string decodeStr = string.Empty;
13 
14             //所有要解码的字符
15             for (int i = 0; i < test.Length; )
16             {
17                 int j = 0;
18                 //赫夫曼树结构模板(用于循环的解码单个字符)
19                 for (j = huffmanNodes - 1; (huffman[j].left != 0 || huffman[j].right != 0); )
20                 {
21                     if (test[i].ToString() == "0")
22                     {
23                         j = huffman[j].left;
24                     }
25                     if (test[i].ToString() == "1")
26                     {
27                         j = huffman[j].right;
28                     }
29                     i++;
30                 }
31                 decodeStr += alphabet[j];
32             }
33             return decodeStr;
34         }
35 
36         #endregion
复制代码

 

最后上一下总的运行代码

View Code

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值