探究系统质量对面向服务的商业智能架构的影响
简介
近年来,企业正致力于实施以数据和分析驱动的商业智能(BI)系统,以获得有洞察力的决策。根据高德纳 2015年的报告,商业智能平台的全球市场在2013年增长了9%,并在随后的5年中预计将以8.7%的复合年增长率(CAGR)持续扩展。
一个常规的BI系统是一个提供广泛功能的集成套件。它提供了用于仪表板、在线分析处理(OLAP)工具、生产报告、财务报告、多维分析、数据挖掘工具、即席查询和报告工具、预测分析工具以及高级可视化功能的工具集(拉尔森,2012年;萨伯瓦尔和贝塞拉‐费尔南德斯,2010年;沙尔达、德伦、特班、阿罗恩森和梁,2014年;特班、沙尔达和德伦,2011年)。为了做出有利的组织商业决策,BI在研究与实践中是一个重要的研究领域。一些学术研究人员从管理视角提出了若干BI成功框架(阿诺特和珀万,2008年;丁特和弗洛里安,2009年;侯,2015a,2015b;王伟、刘、冯和王,2014年;王和王,2008年;杨和科罗尼奥斯,2010年)。
然而,从技术视角特别是由面向服务的概念。而且,以往的研究均未集中探讨基于 SOA的BI架构系统质量因素的影响。因此,本研究旨在通过考察系统质量因素对基于SOA的BI架构的影响,缩小实践与学术研究之间的差距。
本研究使用验证性因子分析(CFA)来传播并阐明研究者的见解。开发了一项包含44个项目的李克特量表调查工具,用于评估商业智能架构的两个构念(组织运营构念和组织绩效构念),以评估个体指标对其相应构念的影响,检验因子效度,并最终检验所提出的假设。为进行验证性因子分析(CFA),采用偏最小二乘‐结构方程模型(PLS‐SEM)作为模型分析技术对数据进行分析。
在下一节中,展示了本研究的文献基础。概念化的研究模型是随后提出了研究设计、方法和结果。最后,对结果进行了讨论,以及对研究和实践的贡献,并概述了未来可能进一步开展的研究。
文献综述
BI架构
通常,一种广泛采用的现代企业级商业智能架构是一种分布式多层架构,以数据仓库作为通用的后端层(达文波特和哈里斯,2017)。
面向服务的架构(SOA)
面向服务的架构(SOA)被描述为一组已建立的服务,这些服务可以按需在网络中相互组合、重用并具备相互通信的能力(埃尔,2005)。此外,个人服务可以在不了解底层系统平台的情况下被访问。
系统质量因素
迄今为止,根据表1中的分析,已发现存在大量关于影响基于SOA概念的BI架构因素的学术研究。
通过对与影响SOA、BI以及软件架构设计的因素相关的学术与实践文献进行细致审查,构建了一个综合矩阵,如表1所示。Meier(2009)和奥布莱恩、梅森和巴斯(2007)分别提出了SOA和企业系统架构设计中的一些因素。特别是,O’Brien等人(2007)讨论的是面向服务的概念下SOA的质量属性,而非BI的质量属性。在后续的研究中,Meier(2009)提出了一种直接的方法,通过将SOA质量属性在SOA框架内分为四类——“系统”、“用户质量”、“设计时”和“运行时”,来组织该领域。然而,这些分类并不适用于基于SOA的BI。表1展示了由O’Brien和Meier提出的质量属性,但并非所有这些质量属性都适用于基于SOA的BI。另一方面,丁特和弗洛里安,2009年确定了四个设计因素:“流程导向”、“基于SOA的商业智能卓越性”、“嵌入式商业智能卓越性”和“数据管理卓越性”,这些因素仅集中在基于SOA的BI的管理背景上,而非基于SOA的BI架构的系统质量因素。尹和郑(2018)仅探讨了成功实施SOA所需的关键因素,而未涉及BI架构的背景。穆勒、林德斯和皮雷斯(2010)采用德尔菲法,旨在识别SOA在商业智能实施中的机遇与局限,但并未关注基于SOA的BI架构的系统质量因素。总之,以往关于SOA的研究(丁特和弗洛里安,2009年;Meier,2009;穆勒等人,2010;O’Brien等人,2007;尹与郑,2018)并未关注系统质量因素对基于SOA的BI架构的影响,而本研究试图填补这一空白。
解决实践文献与学术研究之间的差距。
理论视角与假设形成
通过广泛的文献综述可以得出结论,基于SOA的BI架构的大多数因素属于操作性需求和性能需求的范畴。因此,本研究将不考虑政治需求。如表2所示,提出了一个更广泛的模型来影响基于SOA的BI架构的质量(Chan, Sim, 和 Yeoh,2011;Chan, Yeoh, 朱, 和 刘,2012)。以下将讨论相应构念内的各个因素。
组织运营构念
BI系统在一段时间内必须运行的功能环境被定义为操作性需求(Ashrafi 和 Ashrafi,2009;Bennett, McRobb, 和 Farmer,2006; Dennis, Wixom, 和 Roth,2015)。安全性、敏捷性、可管理性、可用性和互操作性是软件架构和面向服务的架构中常见的典型因素。在本研究中,提出了若干可能影响BI系统生产力的新因素,如开放性、通用性和单一开放API,作为对软件架构和面向服务的架构背景下传统系统质量因素的补充。
互操作性是指使服务能够在不同平台上平稳协作的属性。O’Brien等人(2007)强调:“由于互操作性可能会带来性能开销,因此架构的设计和权重要避免任何性能上的缺陷。” 可用性定义了以最小潜在人为错误实现高效使用的能力。O’Brien等人(2007)指出,在计算机分布式系统的研究中,面向服务的架构(SOA)对可用性构成了巨大限制,特别是涉及从用户请求到远程服务提供者的处理过程。敏捷性定义了调整底层架构以满足企业商业战略新需求的能力。敏捷性可通过架构流程重构来实现,保持架构元素的可见性,从而能够对其进行显式管理。可管理性指的是系统在管理、监控和调试方面的便捷程度(Meier,2009)。系统的运行时质量被定义为可管理性。迈尔(2009)确定了与可管理性相关的若干重要问题,这些问题包括故障排除工具信息不完整、运行时可配置性、监控、追踪以及分析工具。O’Brien等人(2007)进一步指出,安全性是面向服务的架构(SOA)和Web服务面临的主要挑战。
Dong, Paul, 和 Zhang(2008)强调,面向服务的系统应支持故障检测、认证功能,甚至信任协商自动化。安全性通过三个基本方面实现,即机密性、完整性和认证。所有这些方面均可通过称为安全协议的安全协议来处理安全套接层(SSL)。另一方面,SOA中的分布式组件可以进一步提高基于SOA的商业智能(BI)的可扩展性和可管理性。
组织绩效构念
正如Bennett等人(2006)、Dennis等人(2015)和Ashrafi与Ashrafi(2009)所述,系统在给定时间段内输出与输入量对应的一对响应时间被定义为性能需求。在本研究中,绩效构念包含五个因素,它们是响应时间、吞吐量、可用性、可靠性和可扩展性。
系统必须在给定时间范围内完成其活动的程度定义为响应时间。响应时间起着重要作用,正如O’Brien等人(2007)所指出的,在大多数情况下,性能对系统实施前的面向服务的架构(SOA)设计和评估具有负面影响。吞吐量表示在给定时间间隔内发生的事件数量(Meier,2009)。吞吐量定义每秒完成的传入事务速率,是衡量系统响应能力的性能指标之一。吞吐量被归类为基于SOA的商业智能(BI)过程中的评估指标之一(阿贝略 & 罗梅罗,2012)。BI系统除了计划维护外需保持每周7天运行的功能程度定义为可用性。O’Brien等人(2007)建议可用性涉及服务提供者与用户之间实现面向服务的架构(SOA)。此外,迈尔(2009)强调,物理层的故障(即应用服务器或数据库服务器)可能导致整个系统瘫痪。通过计算总中断持续时间占假定持续时间的百分比,可用性可以定义系统运行的时间程度。Liu等人(2007)所定义的可用性是指在面向服务的架构(SOA)中Web服务可随时使用的准备状态。恶意代码或计算机病毒的攻击、系统和基础设施的故障以及系统负载都可能影响可用性(Meier,2009)。基于SOA的系统需要平稳运行,特别是在不同语言和平台上通过服务实施分布式事务时(O’Brien等人,2007)。当BI系统需要提升以完成其活动和优化时,系统必须保持持续运行。这一特性由可靠性定义。迈尔(2009)将可靠性定义为系统在特定持续时间内保持功能正常的能力。可扩展性是指BI系统在全球组织范围内以及时方式支持大量用户和大量数据的能力。此外,O’Brien等人(2007)强调,如果Web服务技术缺乏可扩展性特征,用户数量或数据量的增长可能成为SOA中的主要问题。可扩展性是一项高优先级的挑战,主要是因为系统被期望能够功能性的——尽管当负载或需求发生变化时(Meier,2009)。
为了理解所提出因素对系统质量以及对个人和组织的影响,表2展示了一个变量矩阵。为了确保先前建议的因素能够带来信息系统(IS)的成功,本研究选择德隆和麦克莱恩(1992)的信息系统成功模型作为总体指导原则。
Delone and McLean’s(1992) IS success model
德隆和麦克莱恩(1992)的信息系统成功模型被认为是被引用最广泛的IS成功模型之一,是衡量信息系统成功的有力指标。根据研究背景的不同,德隆和麦克莱恩(1992)建议研究人员应从该成功模型中选择适当的测量指标。因此,在本研究中,基于德隆和麦克莱恩(1992)的信息系统成功模型构建了五个独立的构念。组织运营构念、组织绩效构念、系统质量、个人绩效和组织绩效被用于评估基于SOA的BI架构的成功。这些构念被认为是在多构念情境下衡量同一现象(即基于SOA的BI成功)的相关指标。测量模型包含44个子项,用于测量本研究中的五个构念。
系统质量
一个成功的基于SOA的BI架构通常具有易用性、功能性、数据质量和快速信息检索等特点(DeLone & McLean,2003;Sedera & Gable,2004;Xu & Hwang,2008)。BI系统的成功更可能通过其对信息系统专业人员和最终用户生成支持决策的信息的简便性和便利性来评估。因此,本研究选择“易于使用”、“快速信息检索”和“可靠数据”来衡量系统质量。提出以下假设:
假设1(H1): 组织运营与系统质量呈正相关。
假设2(H2): 组织绩效与系统质量呈正相关。
个人绩效
多位信息系统研究人员(钟、斯基布涅夫斯基和夸克,2009;德隆和麦克莱恩,2003;塞德拉和盖布尔,2004;徐和黄,2008)已证明可以使用相关指标来衡量组织中的个人绩效。因此,本研究选择“有效决策”、“个人生产力”和“工作绩效”来衡量个人绩效,因为拥有更多有用且有洞察力的信息,组织中的员工应能做出更好的决策,从而提高个人生产力。所选变量对个人层面的研究具有积极意义,因为它们有助于员工在日常工作中做出有效决策,进而提升员工的生产力。性能够得到提升,最终,他们的工作绩效也能够得到改善。
提出以下假设:
假设3(H3):
系统质量对个人绩效有积极影响。
组织绩效
基于SOA的BI架构能够在每日变化的竞争动态商业环境中提供更强的分析敏锐度和洞察力。正确使用基于SOA的BI架构可以帮助组织获得竞争优势,例如成本节约、时间节省、市场扩展、增量附加销售、降低搜索成本、改进的业务流程、提升的竞争地位、组织成本人员需求、成本降低、整体生产力、改善的结果或产出、增强的电子政务能力、改进的业务流程变革、增加的收入(钟等人,2009;DeLone & McLean,2003;Sedera & Gable,2004;Xu & Hwang,2008)。因此,本研究选择“成本降低”、“整体生产力”和“业务流程”来衡量组织绩效。所选变量有利于组织研究,特别是在成本降低方面,这将进一步带来整体生产力的提升以及组织中业务流程的改进。
简而言之,商业智能架构的系统质量因素有助于基于组织运营构念和组织绩效构念建立合作关系,这对于提升系统质量至关重要,尤其是在IT从业者中。图1展示了组织运营构念、组织绩效构念、系统质量、个人绩效和组织绩效之间的这些关系。在两个构念之间提出了四个正向关系。结合这些研究问题和文献综述,提出以下假设以检验各构念之间的关系:
假设4(H4): 系统质量对组织绩效有积极影响。
根据之前提出的假设,图1展示了我们提出的研究框架。
方法
抽样与数据收集
数据主要通过基于网络的调查进行收集。从马来西亚雇主联合会(MEF)的邮件列表中随机选取了1912家公司作为样本。马来西亚雇主联合会(MEF)是马来西亚私营企业雇主的中央组织,成立于1959年,旨在促进和保护马来西亚雇主的权利与利益。随后,发送了包含附信和调查网站的超链接已发送给各公司。本次调查的目标对象为IT部门主管、IT或信息系统经理,以评估其商业智能架构的成功因素。问卷分发给了这些公司中的IT从业者(即IT经理/信息系统经理/IT高管/IT项目经理),他们在本研究中被认为是最合适的人选,能够提供客观观点,识别影响基于SOA的BI架构系统质量的因素。在一周后再次发送了提醒邮件。对于未回应的公司,则通过邮寄方式将问卷寄送给潜在受访者,并附上附信、问卷副本以及预付回邮信封。最终共收到61份回复,其中1份无效。根据金和内斯特德(1999)对偏最小二乘法(PLS)的建议,60的样本量被认为足够充分。
测量工具
调查工具基于对学术与实践文献的全面回顾而开发。本研究使用了44个项目来捕捉所研究的自变量(即组织运营构念和组织绩效构念)。项目回复采用六点李克特量表,范围从0= 不适用、强烈不同意到5= 强烈同意。
结果
受访者人口统计资料
表3显示了受访者的 demographics 情况。受访者普遍受教育程度较高(21.66% 处于证书/文凭水平,66.67%为学士学位持有者,11.67%为研究生学位持有者。超过一半(61.66%)的受访者所在公司在过去2至5年内完成了商业智能实施。大多数受访者为在组织中担任IT管理职位的IT从业者,因此能够提供与组织绩效相关的有利回答。结果表明,大多数受访者的商业智能使用时间合理,他们在商业智能领域受教育程度高、知识丰富,因此能够就个人绩效提供判断准确的回答。
数据分析
数据使用PLS‐SEM方法(林格尔、温德和威尔,2005)进行研究模型验证和假设检验。在结构模型估计中应用PLS‐SEM的三个主要原因如下:
i. PLS能够处理构成性因素和反映性因素(陈,1998),
ii. PLS对样本量的限制最小,以及
iii. PLS适用于探索性方法,因为在理论构建的初期发展阶段评估阶段具有优势(朱利安和拉马加拉希,2003)。
测量模型评估
测量模型评估通过区分效度的内部一致性、组合信度以及通过平均方差的收敛效度来支持提取的平均方差提取量(AVE)以及通过外载荷衡量的指标信度。必须标明外载荷,以保留测量模型中的项目。较高的外载荷表明测量指标之间具有较高的通用性。指标信度与指标在测量构念时的外载荷相关。指标外载荷的可接受标准通常为0.70或更高。根据黑尔、林格尔和萨尔斯泰特(2013),若指标的外载荷值介于0.40至0.70之间,有时可予以保留,因其对内容效度有所贡献。外载荷低于0.40的指标不应使用,因此这些指标将被从量表中删除(黑尔、林格尔和萨尔斯泰特,2011)。
图2展示了外载荷高于0.4阈值的测量模型。
移除了载荷较低(<0.5)的指标,以提高量表的平均方差提取量。通过删除外部加载值低于0.50的项目进行了第二次重新估计。表5描述了第二次重新估计的结果。表6描述了重新估计的总结以及数据清洗后的AVE。
基于观测项目变量的相互相关来估计可靠性,是通过内部一致性可靠性(CR)来衡量的。CR用于确认构念与其指定的指标之间的测量吻合程度。
根据黑尔等人(2011)的观点,在研究初期,组合信度的可接受值至少应为0.6。尽管组合信度应达到0.7或更高,但在研究初期是可接受的(海尔、林格尔、林格尔和梅纳,2012)。然而,对于探索性研究,巴戈齐和易(1988)指出,0.6或更高即可接受。表5显示了构念指标反映潜在构念的程度——CR值介于0.775465至0.949688之间,超过了推荐值0.7的界限(黑尔等人,2012)。
平均方差提取量(AVE)值期望达到0.50或更高,以确保构念能解释其指标超过一半的方差(Hair等,2013)。表4展示了第一次重新估计的结果。除“组织运作构念”(0.370096)和“绩效因子”(0.280231)量表的AVE外,克朗巴哈系数和组合信度值均分别远高于0.6和0.7的阈值。
载荷较低(<0.5)的指标被移除,以提高量表的平均方差提取量(AVE)值。通过删除外部载荷值低于0.50的项目进行第二次重新估计。在第二轮项目删除过程中,共删除了八个外载荷低于0.50的项目。其中两个项目(L03、L09)来自“组织运营构念”,六个项目(E01、E04、E07、E09、E10、E11)来自“绩效因子”。表5展示了第二次重新估计的结果。研究结果表明,克朗巴哈系数和组合信度的值均远高于0.6阈值,如表5所示,因此构念的可靠性得以满足。
AVE 的值用于检验各构念的收敛效度是否远高于 0.5 的阈值,如表5所示,仅“组织运营构念”量表(0.428948)和“绩效因子”量表(0.367344)的 AVE 除外,因此收敛效度得以实现。
下一个评估是评价反射型模型的区分效度。区分效度是指测量结果不受其他变量影响的程度,通常通过所关注的测量指标与其他构念测量指标之间的低相关性来体现。Fornell和Larcker(1981)准则的结果显示,AVE的平方根对于各构念而言,其AVE的平方根大于与其他构念之间的相关系数。表7显示,所有项目在AVE的平方根上的值均大于相关行和列中的项目值。因此,结果表明模型中的所有构念均符合区分效度标准。综上所述,本研究达到了区分效度。
结构模型评估
构念之间的因果关系通过结构模型估计路径系数来衡量。R² 的值用于确定模型的预测能力。综合来看,R² 和路径系数(载荷和显著性)表明数据对假设模型的支持程度(陈,1998)。
图2展示了包含R²值、t值和路径系数的结构模型。表8中的T统计量用于指导我们接受或拒绝研究假设。总体而言,假设检验结果表明,组织运营构念(LF)和绩效构念(PF)对基于SOA的BI架构的系统质量(SQ)具有显著影响。结果还表明,系统质量(SQ)对个人绩效(DI)和组织绩效(GI)具有显著影响。绩效因子被发现对系统质量具有较强的影响。
质量紧随组织运营构念之后。进一步分析表明,绩效因子是系统质量的关键预测因素,它具有较强的个体绩效和组织绩效。
表8通过展示每条因果效应的路径系数和t统计值,总结了假设检验的结果。表8显示,所有路径的t值均高于最低临界值1.645,在= 1百分比的显著性水平上达到显著(黑尔等,2011),结果表明各构念之间所有假设的路径关系在统计上均显著,且其标准化路径系数高于0.1。组织运作构念(b = 0.1195,p < 0.05)与系统质量(LF→SQ)呈正相关,绩效因子(b = 0.4564,p < 0.05)与系统质量(PF→SQ)呈正相关,系统质量(b = 0.8238,p < 0.05)与个人绩效(SQ → DI)呈正相关,系统质量(b = 0.7748,p < 0.05)与组织绩效(SQ→GI)呈正相关,解释了27.5%的方差,从而支持本研究的假设H1、假设H2、假设H3和假设H4。通过检查表8的每一行,内生模型表明,绩效因子对系统质量的影响最强(0.422),其次是组织运营构念(0.113),而系统质量对个人绩效的影响最强(0.824),其次是对组织绩效的影响(0.775)。
根据Chin(1998)的描述,内部路径模型中内生潜在变量的R²值为0.67、0.33或0.19时分别被视为显著、中等或较弱。结构路径评估的结果如图2所示,其中内生潜在变量(SQ)的R²为0.275,高于临界值,因此该模型处于可接受水平。图2显示,内生潜在变量个人绩效(DI)的R²值为0.679,组织绩效(GI)为0.600,均被视为显著。
评估结构模型的另一个重要标准是路径系数的估计。应根据符号和大小来评估结构模型中路径关系的估计值。在评估路径系数时,需比较所有结构路径的贝塔值,路径系数越高,对内生潜在变量的影响越显著。图2和表6显示,PF(绩效因子)具有0.4564的最高系数值,这意味着绩效因子解释了较大的方差,并对系统质量产生较强影响。影响系统质量的第二个主要构念是LF(组织运营构念),其路径系数为0.1195。
由于偏最小二乘‐结构方程模型(PLS‐SEM)在同时评估测量模型和结构模型方面的灵活性,本研究采用PLS‐SEM进行验证性因子分析(CFA)(哈拉维和麦卡锡,2008)。然而,在应用CFA之前并不需要进行探索性因子分析(EFA),因为目前尚无普遍认可的决策规则,且关于这两种方法的合理使用仍存在进一步讨论(克劳利和范,1997;赫尔利、斯坎杜拉、布兰尼克和范登伯格,1997)。使用EFA的目标之一是从问卷中已定义的项目池中剔除或减少因子载荷较低以及冗余的项目,这一过程已在本研究中完成。为提高量表的平均方差提取量(AVE)值,已将低载荷(<0.5)的项目删除,如表4和表5所示。
讨论
本研究探讨了企业运营和组织绩效构念对基于SOA的BI架构的影响。结果表明,所有获取的路径的t值均高于最低临界值,即1.645在显著性水平= 1%下(黑尔等,2011)。组织运营构念(b = 0.1195,p < 0.05)与系统质量(LF→SQ)呈正相关,组织绩效构念(b = 0.4564,p < 0.05)与系统质量(PF→SQ)呈正相关,系统质量(b = 0.8238,p < 0.05)与个体绩效(SQ→DI)呈正相关,系统质量(b = 0.7748,p < 0.05)与组织绩效(SQ→GI)呈正相关,因此支持了本研究的假设H1、H2、H3和H4。
总体研究结果表明,组织运营构念和组织绩效构念对基于SOA的BI架构具有积极且显著的影响。本研究的分析结果显示,组织运营构念和组织绩效构念在个人绩效(有效决策、个人生产力和工作绩效)以及组织绩效(成本降低、整体生产力和业务流程)方面,对BI系统质量具有积极影响。因此,BI架构师、BI软件供应商以及IT从业者在基于SOA的BI架构的设计与实施过程中,应分别更加关注组织运营构念(可部署性、通用性、开放性和单一开放API)和组织绩效构念(响应时间、吞吐量、可用性和可扩展性)。因此,假设H1得到支持。
这些结果的可能解释在于能够提供业务的统一单一视图,这对于组织内各种类型用户的数据有效性至关重要,特别是对于那些拥有大量数据资产、应用程序和用户类型的组织而言。应提供使用简单网页操作的通用用户界面,以访问广泛的BI内容。相同的结果应在不同类型用户之间以及从传统桌面环境到手持移动设备的各种技术平台上普遍可用。元数据层的可用性有助于推动支持多语言的全球部署。BI架构的部署必须通过单一工具(例如浏览器)简单完成,且无需下载额外插件和小程序。应用程序编程接口(API)允许将BI集成到其他应用和系统中,反之亦然。单一API覆盖所有BI功能尤为重要,同时不会影响应用程序的功能性或上市时间。提供所有BI功能的单一界面是必不可少的。通过使用Web服务和单一开放API,应持续完全访问大量功能。
因此,假设H2得到支持,即构念组织绩效被发现具有显著性,影响了基于SOA的BI架构的质量。
组织运营构念包括响应时间、吞吐量、可用性和可扩展性等因素。Response time, throughput, availability, and scalability 与系统质量之间存在积极且显著的关系。研究结果发现与之前的研究一致(董等人,2008;Meier,2009;奥布莱恩等人,2007;罗特姆‐加尔‐奥兹,2009)。苏卡尔贾(2005)探讨了BI部署中的可扩展性和可用性系统质量因素要求。由于数据量巨大,大型组织中的企业级商业智能架构可能面临响应时间缓慢的问题。在混合工作负载环境中同时支持大量操作性和战略性查询时,响应时间可能导致性能问题。企业级BI架构用于处理海量的用户请求,关键在于该架构必须借助负载均衡实现最优性能。在负载均衡机制中,调度器根据请求的相似度级别将用户请求路由到配置中的特定服务器。使用OLAP源可以显著减少响应时间,因为数据已经过计算和聚合,便于进行强大的分析和报告。通过更长的、内部的、多维数据集缓存清除方法自动缓存更多查询,可以减少同一用户或后续用户的后续报表查询的响应时间。
在配置企业级BI系统时,应自动化请求的最优路由,以将请求发送到适当的服务器,从而实现更高的吞吐量。请求的最优路由由调度器完成,调度器是运行在Web应用服务器或Servlet容器上的多线程应用程序。随着组织内商业智能需求在范围和复杂性上的增长,架构必须保持响应能力。BI用户可能包括组织内部甚至通过外联网访问的外部用户。为了满足这些用户的需求,BI架构必须具备高度可扩展性。因此,该架构必须确保高可用性并实现最小停机时间。假设H3得到支持,结果表明系统质量对个人绩效具有积极影响,体现在有效决策过程、提高个人生产力以及更好的工作表现方面。
结果与塞德拉和盖布尔(2004)以及徐和黄(2008)的研究先前发现一致。假设H4的结果表明,系统质量对组织绩效具有积极影响,体现在成本降低、组织整体生产力提升以及业务流程改进方面。先前的研究(钟等人,2009;塞德拉和盖布尔,2004;徐和黄,2008)也提供了 consistent 的结果,表明系统质量对组织绩效具有正面作用。
本研究的另一发现是,组织绩效构念被证实是对系统质量具有最强影响的最强预测因子(0.422),其次是组织运营构念(0.113)。因此,组织绩效构念在提升系统质量方面比组织运营构念更具主导性。基于SOA的BI架构的系统质量。对这一结果的一种可能解释是,性能问题始终存在,尤其是在混合工作负载环境中。能够在最优响应时间内同时支持操作型查询和战略型查询至关重要。BI架构必须具备可扩展性,以满足日益增长的业务挑战需求。
结论
理论意义
本研究在多个方面对相关研究做出了贡献。首先,关于基于SOA的BI架构系统质量领域的研究尚显不足。因此,本研究的发现不仅丰富了商业智能架构质量研究的文献,还从DeLone和Mclean的信息系统成功模型的角度为理解BI架构质量提供了新的视角。此外,本研究可作为开发操作性知识资产清单的基础,有助于各方对基于SOA的BI架构的质量构念及其对个人与组织层面的影响达成共识。其次,本研究在方法论上提供了一种系统性的、逐步推进的方法,用以确定自变量(组织运作构念和组织绩效构念)对另一自变量(系统质量)的影响,而这一问题此前常被研究人员和实践者所回避。通过应用偏最小二乘法(PLS),本研究也为现有知识和文献中的方法论发展做出了重要贡献。
实际意义
这项研究也对实践有所贡献。首先,研究结果提供了一份影响商业智能架构质量的关键因素清单,可作为指导组织进一步提升其BI架构质量的激励依据。此外,所识别的基于SOA的BI架构质量构念有助于决策者更清晰地理解组织中影响基于SOA的BI架构质量的重要因素。本研究还通过强调在BI架构设计与实施过程中需要缓解的构念,显著贡献于实践和管理。其次,研究发现为BI软件供应商、BI架构师或任何IT从业者提供了基础,以帮助他们在面向服务的概念背景下设计与实施更优的BI架构。第三,组织需要特别关注从响应时间、吞吐量、可用性、可靠性和可扩展性等方面提升系统性能。
局限性
在局限性方面,本研究的样本群体仅限于马来西亚的IT从业者。未来的研究可以纳入来自其他国家的受访者。第二个局限性是,本研究未考虑中介或调节变量对自变量与因变量之间关系的影响。未来的研究可在现有模型的基础上,引入并探讨知识共享(中介)或技术不确定性(调节)等变量。
利益冲突声明
作者声明不存在与本文的研究、撰写和/或发表相关的潜在利益冲突。
资助
作者未获得本文研究、撰写和/或发表的任何财务支持。
ORCID iD
陈利均 https://orcid.org/0000‐0002‐7156‐0051
系统质量对SOA-BI架构的影响
2665

被折叠的 条评论
为什么被折叠?



