《SiamFC++:Towards Robust and Accurate Visual Tracking with Target Estimation Guidelines》论文笔记

本文深入分析了SiamFC++跟踪算法,遵循4条设计原则:目标位置与判别解耦、清晰的置信度、无数据先验和精确位置估计。SiamFC++在多个VOT数据集和TrackingNet上表现出色,同时提供了与SiamRPN++的对比,揭示了后者因依赖anchor导致的问题。文章详细探讨了方法设计、训练和预测过程。
摘要由CSDN通过智能技术生成

参考代码:video_analyst

1. 概述

导读:这篇文章指出之前的一些跟踪算法没有深入讨论针对跟踪任务的实质,很多时候只是在某些点上进行突破,因而最后方法的性能总是有局限性的。对此文章深入分析了跟踪网络的特性,因而对跟踪网络的设计提出了4点建议:G1(目标位置估计和目标判别需要接耦,分别具有各自的分支)/G2(目标判别置信度不能与实际相模糊)/G3(不能依赖数据分布等先验知识,否则导致泛化性鲁棒性不强)/G4(目标位置的估计应该准确)。正是基于上的4点设计指导,文章设计了SiamFC++网络,在5个VOT数据集(OTB2015/VOT2018/LaSOT/GOT-10k)上表现为state-of-art,并且在TrackingNet大型数据集上达到75.4的AUC,在2080Ti GPU上帧率为90FPS。

对于之前的一些跟踪算法文章进行分析,大致上可以将其划分为3个大类:

  • 1)以DCF(Discriminative Correlation Filter)和SiamFC为代表暴力使用多尺度测试,并且假设相邻帧上目标的尺度和比例变化比例是固定,但是这在实际中却不能成立;
  • 2)以ATOM为代表使用多个bounding box进行初始化,之后迭代进行最终目标box,虽然极大提升了目标定位的准确度,但是却带来了计算量和额外的超参数(initial box的数量和分布等);
  • 3)以SiamRPN++为代表使用RPN网络进行目标位置估计,但RPN网络是需要预先设置anchor超参数的,这就带来了目标辨别的不确定性以及目标尺度的先验知识(用于设计anchor的超参数);

就目前较好的跟踪网络SiamRPN文章将其与SiamFC++进行对比,见下图所示:
在这里插入图片描述
可以看到SiamRPN中目标的判别分数和实际的anchor是并不匹配的这就导致了其性能的缺陷。通过探究跟踪网络的性质,文章对于跟踪网络的设计给出了下面的几点指引:

  • 1)G1:将目标位置估计和目标判别解耦,分别使用不同的分支进行预测;
  • 2)G2:目标的置信度应该直接反应是否存在目标,而不是与预先定义的anchor之类的产生关联;
  • 3)G3:不应该使用尺度/比例等数据集上的先验分布特性,从而导致其在其它数据集上泛化性能下降;
  • 4)G4:直接使用ATOM类似的目标位置估计度量,而不是使用目标判别置信度,从而更加直观体现目标位置估计的准确性;

对此文章在章节“Comparison with Trackers that Do not Apply Our Guidelines”对其进行了讨论。其具体表现在SiamRPN++中主要由三点与文章提出的跟踪网络设计思路不相匹配:

  • 1)由于anchor的引入导致目标判别置信度表达的是anchor和目标的相似性,而不是目标template和实际目标的相似性。这是由于这一点SiamRPN++网络会带来一定的假阳性结果,特别是当目标的外表发生较大变化时(如旋转/形变)其在目标周围物体和背景上产生无法解释的高置信度预测结果,如图1。文章认为RPN机制匹配的是目标和anchor而不是目标和目标,因而匹配的结果就是次优的。文章统计了SiamRPN++和SiamFC++在跟踪正确与否(是否与GT有重合)的数量和目标判别置信度之间的分布关系,见图3的第一行。可以看到在SiamRPN++中错误和正确的数量分布是呈现近似的分布,而SiamFC++中则是两个较大差异的分布。此外,另一原因是特征进行匹配的时候使用的是固定的尺寸并且与之匹配的anchor也是设置好的超参数;
  • 2)由于存在anchor超参数,这就导致了SiamRPN++是与anchor的设计存在关联的,进而与数据的分布存在关联。这就导致经过训练之后SiamRPN++的预测结果与anchor box有更佳高的重合度(见图3的第二行),这就导致了新能的下降;
  • 3)没有直接使用目标定位的置信度而是使用目标判别的置信度,这样的方式在IoU-Net中就已经指出了其弊端,因而SiamFC++采用了预测IoU的形式;

在这里插入图片描述

2. 方法设计

2.1 跟踪方法pipline

在这里插入图片描述

2.2 基于Siamese的特征抽取与匹配

文章的网络pipeline已经在图2中给出了,可以很明显的看到其将目标判别分支和目标位置估计分支做了隔离,则其特征抽取和匹配的过程可以描述为下式:
f i ( z , x ) = ψ i ( ϕ ( z ) ) ∗ ψ i ( ϕ ( x ) ) f_i(z,x)=\psi_i(\phi(z))*\psi_i(\phi(x)) fi(z,x)=ψi(ϕ(z))ψi(ϕ(x))
其中, ∗ * 代表cross-correlation操作, ϕ ( ⋅ ) \phi(\cdot) ϕ()代表的siamese backbone输出的特征, ψ i ( ⋅ ) \psi_i(\cdot) ψi()代表对应的具体的任务分支,实现从普通的特征到特定任务空间特征的转变, i ∈ { c l s , r e g } i\in\{cls,reg\} i{ cls,reg}代表目标判别任务和目标位置估计任务。

2.3 依据指引设计的预测头

2.3.1 指引:G1

在图2中可以清楚看到文章已经将目标判别和目标位置估计使用不同的预测头进行区分。

目标判别分支:
对于判别分支输出特征图上的一点 ( x , y ) (x,y) (x,y),其在原图的位置经过映射为 ( ⌊ s 2 ⌋ + x s , ⌊ s 2 ⌋ + y s ) (\lfloor\frac{s}{2}\rfloor+xs,\lfloor\frac{s}{2}\rfloor+ys) (2s+xs,2s+ys),要是这个点落在了GT框的内部,那么就算做是正样本,反之就是负样本了,其中 s = 8 s=8 s=8是网络的stride。

目标位置估计:
对于位置预测特征图上的一点 ( x , y ) (x,y) (x,y),其在原图上对应的点为 ( ⌊ s 2 ⌋ + x s , ⌊ s 2 ⌋ + y

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值