目标检测入门:CVPR2014《R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentat》

研究背景 速度: 经典的目标检测算法使用滑动窗法依次判断所有可能的区域。本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。 训练集: 经典的目标检测算法在区域中提取人工设定的特征(Haar,HOG)。本文则需要训练深度网络进行特征提取。可供使用的有两个数...

2018-11-14 14:10:30

阅读数:13

评论数:0

目标检测入门:tensorflow实现faster rcnn——TFFRCNN

配置fater rcnn需要的环境配置:https://blog.csdn.net/M_Z_G_Y/article/details/81180390 1.需要下载的数据、代码、文件: 数据:Pascal voc2007数据集 代码:https://github.com/CharlesShan...

2018-08-04 16:44:25

阅读数:226

评论数:0

目标检测入门:候选区域选择

滑动窗口        滑动窗口检测器是一种暴力检测方法,从左到右,从上到下滑动窗口,然后利用分类识别目标。这里使用不同大小的窗口,因为一张图片可能展示从不同距离观测检测出不同的目标类型        滑动窗口目标检测算法也有很明显的缺点,就是计算成本,因为你在图片中剪切出太多小方块,卷积网络...

2018-07-30 15:04:07

阅读数:398

评论数:0

目标检测入门:非极大值抑制

首先介绍几个重要指标: IoU(Intersection over Union),译为“交并比”。使用IoU来衡量预测框和真实框的接近程度,一般>0.5就是一个相当不错的结果了。 mAP(mean Average Precision),译为“平均准确率”。是目标检测中...

2018-06-19 10:13:48

阅读数:35

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭