表情识别入门:ECCV2016《Peak-Piloted Deep Network for Facial Expression Recognition》

研究背景 1. 大多数FER(Facial Expression Recognition)方法在学习期间独立地考虑每个样本,忽略每对样本之间的内在相关,这限制了模型的辨别能力。 2. 大多数FER方法专注于识别明显可区分的peak expressions ,并忽略最常见的non-peak ex...

2019-01-02 20:20:49

阅读数 363

评论数 4

目标检测入门:CVPR2014《R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentat》

研究背景 速度: 经典的目标检测算法使用滑动窗法依次判断所有可能的区域。本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。 训练集: 经典的目标检测算法在区域中提取人工设定的特征(Haar,HOG)。本文则需要训练深度网络进行特征提取。可供使用的有两个数...

2018-11-14 14:10:30

阅读数 88

评论数 0

图像检索入门:CVPR2016《Deep Supervised Hashing for Fast Image Retrieval》

原文代码:https://github.com/lhmRyan/deep-supervised-hashing-DSH 研究背景 在使用离散化时希望输出的特征的关于某个值对称,所以如《Deep Learning of Binary Hash Codes for Fast Image Retri...

2018-09-24 15:51:57

阅读数 527

评论数 0

图像检索入门:CVPR2015《Deep Learning of Binary Hash Codes for Fast Image Retrieval》

原文代码:https://github.com/kevinlin311tw/caffe-cvprw15 研究背景       在基于内容的图像检索(CBIR)中,使用深度学习的最为简单的方式是使用神经网络特征层的输出用于计算空间距离来判断相似度,但这样会导致浮点型数据储存消耗和维度灾难。 实...

2018-09-20 20:34:46

阅读数 753

评论数 3

提示
确定要删除当前文章?
取消 删除
关闭
关闭