FERMI-week2

Lecture1
Swaps
一定程度上而言,比较优势的存在,导致了swaps掉期的出现。
金融中介financial intermediary的介入,使得掉期双方的收益有一定的损失,但双方均避免了对方的违约风险。

利率掉期定价 Interest rate swaps
rt :时刻 t 的浮动利率(未知)。
假设A需要借入浮动利率,B需要借入固定利率。
即A借入浮动利率Nrt1,借出固定利率 NX
B借入固定利率 NX ,借出浮动利率 Nrt1
对于A来说,进入该掉期的价值 VA 为:
VA=N(1d(0,T))NXt=1Td(0,t)
其中 N(1d(0,T)) 是收到的B支付的浮动利率资金, NXt=1Td(0,t) 是付给B的固定利率资金。
VA=0 时,即A和B对于处于掉期的任何位置都是无所谓的,此时有
X=1d(0,T)t=1Td(0,t)


Lecture2
远期Forward存在一定的缺点,例如不是由交易所所组织的,因此价格不透明。而且在交易过程中需要恰好有买方和卖方,同时存在违约风险。
此外,由于远期合约Forward Contract的建立时间不同,其相应的价格不同。
因此有了期货Futures
优势:高杠杆高收益,流动性好,标的资产范围广。
劣势:高杠杆高风险,期货的价格近似为标的资产的线性函数,不够灵活(退化为远期)。

例如在0时刻买入期货,价格为 F0 。当 T 时刻到期时,期货价格FT和现货价格 ST 相等,即期货合约持有者持有的价值为 STF0 。此时(即时刻 T ),在现货市场买入与期货内容数量相同的现货,花费ST(这样即达到了持有期货合约者购买到标的资产的目的)。这样期货合约购买者即将未来(时刻 T )需要购买的标的资产的价格锁定在了当前(时刻0)的期货合约价格F0
但需要将保证金和由于期货价格波动导致的margin calls考虑在内。(这也是期货价格近似为标的资产的线性函数的原因,如果没有这个因素,期货价格严格为标的资产的线性函数?)

完美的套期保值并不总是存在
例如到期日不一定和期权持有者需要的日期一致,期货合约的不一定是需要货物的整数倍等等。
Basis = 标的资产的即期价格 - 期货合约价格
当存在完美套期保值时,basis=0
当到期日 T 时,basis不等于0,则存在basis risk
当到期日和期货合约到期日不重合时,或期货合约只是一个和标的相关的资产,则basis risk上升。

例如以A为标的资产的期货合约价格为F0,购买 y 份,则在到期日T的价值为 (FTF0)y ,而在到期日,与A相类似的资产B的现货(即买者需要的数量)价格为 PT 。此时买入B,总资产为 CT=y(FTF0)+PT ,若 yFTPT ,则不存在完美的套期。
总资产 CT 的方差为
Var(CT)=Var(y(FTF0))+Var(PT)+2cov(y(FTF0),PT)
=y2Var(FT)+Var(PT)+2ycov(FT,PT)
为了使得方差最小,应满足一阶条件,即
dVar(CT)dy=0 ,即
y=cov(FT,PT)Var(FT)


Lecture3 期权

pE(t;K,T)+S(t)=cE(t;K,T)+Kd(t,T) ()
证明如下:
在时刻 t ,做以下几件事情:
1.卖出put option p(t)
2.买入call option c(t)
3.卖空underlying S(t)
4.借出在 T 时刻收回的资金 Kd(t,T)
T 时刻,有:
p(t)=max{KS(T),0}
c(t)=max{S(T)K,0}
则在时刻 T ,有p(t)+S(t)c(t)Kd(t,T)=KS(T)+S(T)K=0
根据无套利的假设,在未来时刻确定得到0收益的证券组合,在建立该组合的时刻 t ,其价值也应为0,即t时刻的现金流:
p(t)c(t)+S(t)Kd(t,T)=0 ,可以得到 ()

期权的二叉树模型
对于一个三期的二叉树模型,看涨期权在第三期支付 max{S3100,0} ,根据风险中性定价,该期权的价格应为 EP0[R3max{S3100,0}] ,其中 R 为无风险回报。
但人一般都是风险厌恶(即效用函数为上凸的)的,而不是风险中性(效用函数为直线)的。因此该期权的定价应比风险中性定价要低。
St Petersburg悖论即表明人不是风险中性的。Daniel Bernouilli提出的效用函数即解决了这个悖论。
但是市场上的option只有一个价格,应该使用什么样的效用函数?接下来的replicating portfolio可以解决这个问题。

在deterministic world中定义了strong arbitrage和weak arbitrage。在randomness world中定义type A arbitrage和type B arbitrage。
A: V0<0,V10即0时刻有收入,1时刻无亏损。
B: V00,V10,V10 即0时刻无亏损,1时刻可能有收入,且1时刻必定不会总是没收入。

在一期的二叉树模型中,只有当 d<R<u 才存在无套利。这里 u 是股票上涨的系数,d是股票下跌的系数, R 是无风险利率。

replicating portfolios
在一个有stock和bond的一期二叉树模型中,0时刻持有x份单价为 S0 的stock,和 y 元的bond。即C0=xS0+y。在1时刻,以该股票价格为标的的看涨期权的价值应为 max{S1K,0} 。replicating portfolio的思想就是在0时刻建立起来的证券组合(portfolio),其价值在1时刻应和看涨期权的价值一致(即无论股票是上涨还是下跌,二者应当一致)。这样,根据无套利的假设,0时刻建立起来的证券组合(portfolio)在0时刻的价格应和在0时刻的看涨期权价格一致。
若二者不一致,例如看涨期权价格大于portfolio的价格,则可在0时刻卖空看涨期权,买入portfolio,即0时刻的 V0<0 ,而在1时刻,看涨期权的价格和portfolio的价格相等,即 V1=0 。存在type A的套利。同理可知看涨期权的价格也不能小于portfolio的价格。
这样以来,通过replicating portfolio和no arbitrage的假设,我们找到了可以避免使用效用函数来对期权定价的方法。

同理,可以将对期权的定价推广到以股票为标的的其他衍生品,用replicating portfolio的方式,即在0时刻构建和1时刻衍生品回报相等的portfolio,可以得到方程组

{uS0x+Ry=CudS0x+Ry=Cd

(这里的未定权益只能有两种可能取值,即 Cu Cd ,若存在第三种取值例如 Cx (不妨假设股票价格除了上涨和下降还可以保持不变),则当市场上仅有股票和债券这两种线性无关的资产时,方程组超定,即仅使用股票和债券两种资产无法复制1时刻的payoff)
可以解得:
C0=1R[RdudCu+uRudCd]=1R[qCu+(1q)Cd]=1REQ0[C1]
这里的概率 {q,1q} 是风险中性概率(结合上面的内容,由St Petersburg悖论可知,当价格确实等于未来期望收益的折现时,这里用于计算期望的概率即是风险中性概率,即在这样的概率赋值情况下,agent是风险中性的,否则,agent认为的合适价格应当低于未来期望收益的折现),由上式即可计算得到该衍生品在0时刻的无套利价格。


主要介绍了swaps掉期,futures期货,options期权的概念,以及根据无套利的假设对其进行了定价。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值