本文首先给出使用PCA降维及恢复数据的示例代码。
通过实验证明了直接使用SVM对人脸数据集进行分类是行不通的。
然后分别对比不同 k(number of PCA components) 值的情况下,降维前后图片的差异。
最后使用降维后的图片进行SVM分类,分类准确率令人非常满意。
1. PCA示例代码
# 待降维的矩阵 A
A = np.array([[3, 2000],
[2, 3000],
[4, 5000],
[5, 8000],
[1, 2000]], dtype='float')
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
def std_PCA(**argv):
scaler = MinMaxScaler()
pca = PCA(**argv)
pipeline = Pipeline([('scaler', scaler),
('pca', pca)])
return pipeline
# 将 A 降维为矩阵 R2
pca = std_PCA(n_components=1)
R2 = pca.fit_transform(A)
R2
'''
array([[-0.2452941 ],
[-0.29192442],
[ 0.29192442],
[ 0.82914294],
[-0.58384884]])
'''
# 将 R2还原为 A,可以看到还原出来的矩阵与原矩阵 A 存在误差
pca.inverse_transform(R2)
'''
array([[ 2.33563616e+00, 2.91695452e+03],
[ 2.20934082e+00, 2.71106794e+03],
[ 3.79065918e+00, 5.28893206e+03],
[ 5.24568220e+00, 7.66090960e+03],
[ 1.41868164e+00, 1.42213588e+03]])
'''
2. 读入人脸数据集
该人脸数据集是sklearn自带的,其中共有400张图片,共有40位人员的的照片,每个人10张照片。
import time
import logging
from sklearn.datasets import fetch_olivetti_faces
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
data_home='datasets/'
logging.info('Start to load dataset')
faces = fetch_olivetti_faces(data_home=data_home)
logging.info('Done with load dataset')
'''
2018-09-02 09:51:18,282 Start to load dataset
downloading Olivetti faces from https://ndownloader.figshare.com/files/5976027 to datasets/
2018-09-02 09:51:27,074 Done with load dataset
'''
X = faces.data
y = faces.target
targets = np.unique(faces.target)
target_names = np.array(["c%d" % t for t in targets])
n_targets = target_names.shape[0]
n_samples, h, w = faces.images.shape
print('Sample count: {}\nTarget count: {}'.format(n_samples, n_targets))
print('Image size: {}x{}\nDataset shape: {}\n'.format(w, h, X.shape))
'''
Sample count: 400
Target count: 40
Image size: 64x64
Dataset shape: (400, 4096)
'''
target_names
'''
array(['c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'c10',
'c11', 'c12', 'c13', 'c14', 'c15', 'c16', 'c17', 'c18', 'c19',
'c20', 'c21', 'c22', 'c23', 'c24', 'c25', 'c26', 'c27', 'c28',
'c29', 'c30', 'c31', 'c32', 'c33', 'c34', 'c35', 'c36', 'c37',
'c38', 'c39'],
dtype='<U3')
'''
def plot_gallery(images, titles, h, w, n_row=2, n_col=5):
"""显示图片阵列"""
plt.figure(figsize=(2 * n_col, 2.2 * n_row), dpi=144)
plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.01)
for i in range(n_row * n_col):
plt.subplot(n_row, n_col, i + 1)
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i])
plt.axis('off')
# 从40种类别中各随机选取一张图片,组成一个长度为40的数组 sample_images
sample_images = None
sample_titles = []
for i in range(n_targets):
people_images = X[y==i]
people_sample_index = np.random.randint(0, people_images.shape[0], 1) # 从 0~people_images.shape[0] 中选出一个数
people_sample_image = people_images[people_sample_index, :]
if sample_images is not None:
sample_images = np.concatenate((sample_images, people_sample_image), axis=0)
else:
sample_images = people_sample_image
sample_titles.append(target_names[i])
sample_images.shape
'''
(40, 4096)
'''
# 将 sample_images 按照 n_row * n_col 的阵列来展示
n_row = 2
n_col = 6
plot_gallery(sample_images, sample_titles, h, w, n_row, n_col)

3.直接使用SVM对图片进行分类
下文直接将64*64的人脸图片reshape成1*4096的特征,然后直接输入SVM进行分类。
混淆矩阵的理想输出是对角线上有数字,其他地方没有数字。但是下文输出的混淆矩阵显然不是。
而且根据下文输出的SVM测试报告,图片40个类别里的查准率、召回率、F1值全为0。
这是因为共有4096个特征,但是数据集样本数量才400个,比特征数还少,因此直接将图片放入SVM是行不通的。
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=4)
from sklearn.svm import SVC
start = time.clock()
print('Fitting train datasets ...')
clf = SVC(class_weight='balanced')
clf.fit(X_train, y_train)
print('Done in {0:.2f}s'.format(time.clock()-start))
'''
Fitting train datasets ...
Done in 1.07s
'''
start = time.clock()
print("Predicting test dataset ...")
y_pred = clf.predict(X_test)
print('Done in {0:.2f}s'.format(time.clock()-start))
'''
Predicting test dataset ...
Done in 0.14s
'''
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred, labels=range(n_targets))
print("confusion matrix:\n")
# 混淆矩阵是40*40的矩阵,默认情况下不会全部输出。np.set_printoptions能够完整输出混淆矩阵
np.set_printoptions(threshold=np.nan)
print(cm)

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred, target_names=target_names))

4. 使用PCA降维人脸图片
为了提高分类的准确率,通过PCA算法选取图片的前k个最重要的特征。
首先我们要选取出一个恰当的k值,使得PCA处理后能够保留95%的原数据信息。
# 根据不同的 k 值,构建PCA模型,再把模型处理后数据的还原率放入 explained_ratios数组。
from sklearn.decomposition import PCA
print("Exploring explained variance ratio for dataset ...")
candidate_components = range(10, 300, 30) # list(candidate_components) = [10, 40, 70, 100, 130, 160, 190, 220, 250, 280]
explained_ratios = []
start = time.clock()
for c in candidate_components:
pca = PCA(n_components=c)
X_pca = pca.fit_transform(X)
explained_ratios.append(np.sum(pca.explained_variance_ratio_))
print('Done in {0:.2f}s'.format(time.clock()-start))
'''
Exploring explained variance ratio for dataset ...
Done in 2.02s
'''
plt.figure(figsize=(10, 6), dpi=144)
plt.grid()
plt.plot(candidate_components, explained_ratios)
plt.xlabel('Number of PCA Components(k)')
plt.ylabel('Explained Variance Ratio')
plt.title('Explained variance ratio for PCA')
plt.yticks(np.arange(0.5, 1.05, .05))
plt.xticks(np.arange(0, 300, 20));

# 对比不同k值PAC降维前后的图像
def title_prefix(prefix, title):
return "{}: {}".format(prefix, title)
n_row = 1
n_col = 5
sample_images = sample_images[0:5]
sample_titles = sample_titles[0:5]
plotting_images = sample_images
plotting_titles = [title_prefix('orig', t) for t in sample_titles]
candidate_components = [140, 75, 37, 19, 8]
for c in candidate_components:
print("Fitting and projecting on PCA(n_components={}) ...".format(c))
start = time.clock()
pca = PCA(n_components=c)
pca.fit(X)
X_sample_pca = pca.transform(sample_images)
X_sample_inv = pca.inverse_transform(X_sample_pca)
plotting_images = np.concatenate((plotting_images, X_sample_inv), axis=0)
sample_title_pca = [title_prefix('{}'.format(c), t) for t in sample_titles]
plotting_titles = np.concatenate((plotting_titles, sample_title_pca), axis=0)
print("Done in {0:.2f}s".format(time.clock() - start))
print("Plotting sample image with different number of PCA conpoments ...")
plot_gallery(plotting_images, plotting_titles, h, w,
n_row * (len(candidate_components) + 1), n_col)
'''
Fitting and projecting on PCA(n_components=140) ...
Done in 0.84s
Fitting and projecting on PCA(n_components=75) ...
Done in 0.56s
Fitting and projecting on PCA(n_components=37) ...
Done in 0.44s
Fitting and projecting on PCA(n_components=19) ...
Done in 0.36s
Fitting and projecting on PCA(n_components=8) ...
Done in 0.22s
Plotting sample image with different number of PCA conpoments ...
'''

5. 对PCA降维后的图片进行SVM分类
n_components = 140
print("Fitting PCA by using training data ...")
start = time.clock()
pca = PCA(n_components=n_components, svd_solver='randomized', whiten=True).fit(X_train)
print("Done in {0:.2f}s".format(time.clock() - start))
print("Projecting input data for PCA ...")
start = time.clock()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("Done in {0:.2f}s".format(time.clock() - start))
'''
Fitting PCA by using training data ...
Done in 0.68s
Projecting input data for PCA ...
Done in 0.04s
'''
# 使用GridSearchCV来选择SVC模型最佳参数,设置n_job=4来启动4个线程并发操作,
# 同时设置verbose=2来输出一些过程信息
from sklearn.model_selection import GridSearchCV
print("Searching the best parameters for SVC ...")
param_grid = {'C': [1, 5, 10, 50, 100],
'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01]}
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid, verbose=2, n_jobs=4)
clf = clf.fit(X_train_pca, y_train)
print("Best parameters found by grid search:")
print(clf.best_params_)
'''
Searching the best parameters for SVC ...
Fitting 3 folds for each of 25 candidates, totalling 75 fits
[CV] C=1, gamma=0.0001 ...............................................
[CV] C=1, gamma=0.0001 ...............................................
[CV] C=1, gamma=0.0001 ...............................................
[CV] C=1, gamma=0.0005 ...............................................
[CV] ................................ C=1, gamma=0.0001, total= 0.1s
[CV] ................................ C=1, gamma=0.0001, total= 0.1s
[CV] C=1, gamma=0.0005 ...............................................
[CV] C=1, gamma=0.0005 ...............................................
[CV] ................................ C=1, gamma=0.0001, total= 0.1s
[CV] C=1, gamma=0.001 ................................................
[CV] ................................ C=1, gamma=0.0005, total= 0.0s
[CV] C=1, gamma=0.001 ................................................
[CV] ................................ C=1, gamma=0.0005, total= 0.1s
[CV] C=1, gamma=0.001 ................................................
[CV] ................................ C=1, gamma=0.0005, total= 0.1s
[CV] C=1, gamma=0.01 .................................................
[CV] ................................. C=1, gamma=0.001, total= 0.1s
[CV] C=5, gamma=0.0001 ...............................................
[CV] ................................. C=1, gamma=0.001, total= 0.0s
[CV] C=5, gamma=0.0005 ...............................................
[CV] .................................. C=1, gamma=0.01, total= 0.1s
[CV] ................................. C=1, gamma=0.001, total= 0.1s
[CV] C=1, gamma=0.01 .................................................
[CV] C=1, gamma=0.005 ................................................
[CV] ................................ C=5, gamma=0.0001, total= 0.1s
[CV] C=5, gamma=0.0001 ...............................................
[CV] ................................ C=5, gamma=0.0005, total= 0.1s
[CV] C=5, gamma=0.001 ................................................
[CV] ................................. C=1, gamma=0.005, total= 0.1s
[CV] C=1, gamma=0.005 ................................................
[CV] .................................. C=1, gamma=0.01, total= 0.1s
[CV] C=1, gamma=0.01 .................................................
[CV] ................................ C=5, gamma=0.0001, total= 0.1s
[CV] C=5, gamma=0.0005 ...............................................
[CV] ................................. C=5, gamma=0.001, total= 0.1s
[CV] C=5, gamma=0.001 ................................................
[CV] ................................. C=1, gamma=0.005, total= 0.1s
[CV] C=1, gamma=0.005 ................................................
[CV] .................................. C=1, gamma=0.01, total= 0.1s
[CV] ................................ C=5, gamma=0.0005, total= 0.1s
[CV] C=5, gamma=0.0005 ...............................................
[CV] C=5, gamma=0.0001 ...............................................
[CV] ................................. C=5, gamma=0.001, total= 0.1s
[CV] C=5, gamma=0.001 ................................................
[CV] ................................ C=5, gamma=0.0001, total= 0.1s
[CV] ................................ C=5, gamma=0.0005, total= 0.1s
[CV] ................................. C=1, gamma=0.005, total= 0.1s
[CV] C=5, gamma=0.005 ................................................
[CV] C=5, gamma=0.01 .................................................
[CV] C=10, gamma=0.0001 ..............................................
[CV] ................................. C=5, gamma=0.001, total= 0.1s
[CV] C=10, gamma=0.001 ...............................................
[CV] .................................. C=5, gamma=0.01, total= 0.0s
[CV] ................................. C=5, gamma=0.005, total= 0.1s
[CV] C=5, gamma=0.01 .................................................
[CV] C=5, gamma=0.005 ................................................
[CV] ............................... C=10, gamma=0.0001, total= 0.1s
[CV] C=10, gamma=0.0005 ..............................................
[CV] ................................ C=10, gamma=0.001, total= 0.1s
[CV] C=10, gamma=0.001 ...............................................
[CV] ................................. C=5, gamma=0.005, total= 0.1s
[CV] C=5, gamma=0.005 ................................................
[CV] .................................. C=5, gamma=0.01, total= 0.1s
[CV] ............................... C=10, gamma=0.0005, total= 0.0s
[CV] C=10, gamma=0.0005 ..............................................
[CV] C=10, gamma=0.0001 ..............................................
[CV] ................................ C=10, gamma=0.001, total= 0.1s
[CV] C=10, gamma=0.001 ...............................................
[CV] ............................... C=10, gamma=0.0001, total= 0.0s
[CV] C=10, gamma=0.0001 ..............................................
[CV] ................................. C=5, gamma=0.005, total= 0.1s
[CV] ............................... C=10, gamma=0.0005, total= 0.1s
[CV] C=5, gamma=0.01 .................................................
[CV] C=10, gamma=0.0005 ..............................................
[CV] ................................ C=10, gamma=0.001, total= 0.1s
[CV] C=10, gamma=0.005 ...............................................
[CV] ............................... C=10, gamma=0.0001, total= 0.1s
[CV] C=10, gamma=0.005 ...............................................
[CV] .................................. C=5, gamma=0.01, total= 0.1s
[CV] C=10, gamma=0.01 ................................................
[CV] ............................... C=10, gamma=0.0005, total= 0.1s
[CV] C=50, gamma=0.0005 ..............................................
[CV] ................................ C=10, gamma=0.005, total= 0.1s
[CV] C=50, gamma=0.001 ...............................................
[CV] ................................ C=10, gamma=0.005, total= 0.1s
[CV] C=10, gamma=0.005 ...............................................
[CV] ................................. C=10, gamma=0.01, total= 0.1s
[CV] C=50, gamma=0.0001 ..............................................
[CV] ............................... C=50, gamma=0.0005, total= 0.1s
[CV] C=50, gamma=0.0005 ..............................................
[CV] ................................ C=50, gamma=0.001, total= 0.1s
[CV] C=50, gamma=0.001 ...............................................
[CV] ................................ C=10, gamma=0.005, total= 0.1s
[CV] C=10, gamma=0.01 ................................................
[CV] ............................... C=50, gamma=0.0001, total= 0.1s
[CV] C=50, gamma=0.0001 ..............................................
[CV] ............................... C=50, gamma=0.0005, total= 0.1s
[CV] C=50, gamma=0.0005 ..............................................
[CV] ................................. C=10, gamma=0.01, total= 0.1s
[CV] ................................ C=50, gamma=0.001, total= 0.1s
[CV] C=10, gamma=0.01 ................................................
[CV] C=50, gamma=0.005 ...............................................
[CV] ............................... C=50, gamma=0.0001, total= 0.1s
[CV] C=50, gamma=0.0001 ..............................................
[CV] ............................... C=50, gamma=0.0005, total= 0.1s
[CV] C=50, gamma=0.001 ...............................................
[CV] ................................ C=50, gamma=0.005, total= 0.0s
[CV] C=50, gamma=0.005 ...............................................
[CV] ................................. C=10, gamma=0.01, total= 0.1s
[CV] C=50, gamma=0.005 ...............................................
[CV] ............................... C=50, gamma=0.0001, total= 0.1s
[CV] C=100, gamma=0.0001 .............................................
[CV] ................................ C=50, gamma=0.005, total= 0.1s
[CV] C=100, gamma=0.0005 .............................................
[CV] ................................ C=50, gamma=0.001, total= 0.1s
[CV] C=100, gamma=0.001 ..............................................
[CV] ................................ C=50, gamma=0.005, total= 0.1s
[CV] C=50, gamma=0.01 ................................................
[CV] .............................. C=100, gamma=0.0001, total= 0.1s
[CV] C=100, gamma=0.0001 .............................................
[CV] .............................. C=100, gamma=0.0005, total= 0.1s
[CV] C=100, gamma=0.0005 .............................................
[CV] ............................... C=100, gamma=0.001, total= 0.1s
[CV] C=100, gamma=0.005 ..............................................
[CV] ................................. C=50, gamma=0.01, total= 0.1s
[CV] C=50, gamma=0.01 ................................................
[CV] .............................. C=100, gamma=0.0001, total= 0.1s
[CV] C=100, gamma=0.0001 .............................................
[CV] .............................. C=100, gamma=0.0005, total= 0.1s
[CV] C=100, gamma=0.001 ..............................................
[CV] ............................... C=100, gamma=0.005, total= 0.1s
[CV] C=100, gamma=0.005 ..............................................
[CV] ................................. C=50, gamma=0.01, total= 0.1s
[CV] C=50, gamma=0.01 ................................................
[CV] .............................. C=100, gamma=0.0001, total= 0.1s
[CV] C=100, gamma=0.0005 .............................................
[CV] ............................... C=100, gamma=0.001, total= 0.1s
[CV] C=100, gamma=0.001 ..............................................
[CV] ............................... C=100, gamma=0.005, total= 0.1s
[CV] C=100, gamma=0.005 ..............................................
[CV] ................................. C=50, gamma=0.01, total= 0.1s
[CV] C=100, gamma=0.01 ...............................................
[CV] .............................. C=100, gamma=0.0005, total= 0.1s
[CV] ............................... C=100, gamma=0.001, total= 0.1s
[CV] ............................... C=100, gamma=0.005, total= 0.1s
[CV] ................................ C=100, gamma=0.01, total= 0.0s
[CV] C=100, gamma=0.01 ...............................................
[CV] ................................ C=100, gamma=0.01, total= 0.0s
[CV] C=100, gamma=0.01 ...............................................
[CV] ................................ C=100, gamma=0.01, total= 0.0s
Best parameters found by grid search:
{'C': 10, 'gamma': 0.001}
'''
# 使用最佳参数的SVC来对测试集进行处理
start = time.clock()
print("Predict test dataset ...")
y_pred = clf.best_estimator_.predict(X_test_pca)
cm = confusion_matrix(y_test, y_pred, labels=range(n_targets))
print("Done in {0:.2f}.\n".format(time.clock()-start))
print("confusion matrix:")
np.set_printoptions(threshold=np.nan)
print(cm)
'''
Predict test dataset ...
Done in 0.01.
confusion matrix:
[[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2]]
'''
print(classification_report(y_test, y_pred, target_names=target_names))
'''
precision recall f1-score support
c0 0.50 1.00 0.67 1
c1 1.00 0.67 0.80 3
c2 1.00 0.50 0.67 2
c3 1.00 1.00 1.00 1
c4 1.00 1.00 1.00 1
c5 1.00 1.00 1.00 1
c6 1.00 0.75 0.86 4
c7 1.00 1.00 1.00 2
c8 1.00 1.00 1.00 4
c9 1.00 1.00 1.00 2
c10 1.00 1.00 1.00 1
c11 1.00 1.00 1.00 4
c12 1.00 1.00 1.00 4
c13 1.00 1.00 1.00 1
c14 1.00 1.00 1.00 1
c15 0.75 1.00 0.86 3
c16 1.00 1.00 1.00 2
c17 1.00 1.00 1.00 2
c18 1.00 1.00 1.00 2
c19 1.00 1.00 1.00 1
c20 1.00 1.00 1.00 2
c21 0.75 1.00 0.86 3
c22 1.00 1.00 1.00 2
c23 1.00 1.00 1.00 3
c24 0.67 0.67 0.67 3
c25 1.00 1.00 1.00 2
c26 1.00 1.00 1.00 2
c27 1.00 1.00 1.00 2
c28 1.00 1.00 1.00 2
c29 1.00 1.00 1.00 3
c30 1.00 1.00 1.00 2
c31 1.00 1.00 1.00 2
c32 1.00 1.00 1.00 2
c33 1.00 1.00 1.00 3
c34 1.00 1.00 1.00 1
c35 1.00 1.00 1.00 2
c36 1.00 1.00 1.00 2
avg / total 0.96 0.95 0.95 80
'''

被折叠的 条评论
为什么被折叠?



