magic_kid_2010
码龄14年
关注
提问 私信
  • 博客:464,080
    社区:31,878
    问答:1,743
    497,701
    总访问量
  • 163
    原创
  • 16,567
    排名
  • 279
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
  • 加入CSDN时间: 2011-03-03
博客简介:

magic_kid_2010的专栏

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,194
    当月
    1
个人成就
  • 获得380次点赞
  • 内容获得58次评论
  • 获得894次收藏
  • 代码片获得786次分享
创作历程
  • 19篇
    2024年
  • 3篇
    2023年
  • 18篇
    2022年
  • 14篇
    2021年
  • 48篇
    2020年
  • 65篇
    2019年
成就勋章
TA的专栏
  • Grafana
    1篇
  • 图数据库
    10篇
  • Anaconda
    1篇
  • Beyond Compare
    1篇
  • Chrome
    2篇
  • Drools
    2篇
  • Edraw Max
    1篇
  • Elasticsearch
    1篇
  • ELK
    1篇
  • ER/Studio
    1篇
  • Docker
    15篇
  • Flink
    39篇
  • Flume
    1篇
  • Git
    11篇
  • Greenplum
    3篇
  • Hadoop
    4篇
  • Fiddler
    2篇
  • Idea
    6篇
  • Java
    5篇
  • jvm性能调优
    10篇
  • Kafka
    4篇
  • Linux
    3篇
  • Logstash
    7篇
  • 漏洞升级
    1篇
  • Maven
    6篇
  • Mysql
    10篇
  • Python3
    4篇
  • Scala
    1篇
  • 数据仓库
  • 数据湖
    2篇
  • Storm
    2篇
  • Spring Boot
    6篇
  • Spring Cloud
    4篇
  • TensorFlow
    1篇
  • 其他
    1篇
兴趣领域 设置
  • 大数据
    数据仓库
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

grafana 使用常见问题

grafana 常见问题及解决办法
原创
发布博客 2024.09.20 ·
476 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

图数据库 之 Neo4j 与 AI 大模型的结合绘制知识图谱

1、利用 AI 大模型提取文本信息AI 大模型是指那些经过大规模训练的深度学习模型,具有较强的语义理解和信息提取能力。利用 AI 大模型可以对文本进行实体识别、关系抽取等任务,从而提取出文本中的实体、关系等信息。通过将 AI 大模型提取出的实体、关系等信息转化为 Echarts 所需的数据格式,我们可以利用 Echarts 绘制出美观、直观的知识图谱。Example:北京是中国的首都,拥有许多历史悠久的建筑,其中包括天安门、故宫、天坛、颐和园以及长城。文本内容字数上限为 300。
原创
发布博客 2024.05.05 ·
2204 阅读 ·
17 点赞 ·
0 评论 ·
15 收藏

图数据库 之 Neo4j - 应用场景4 - 反洗钱(9)

MATCH (c:客户)-[:发起交易]->(t:交易)-[:转账给]->(b:受益人), (c)-[:持有账户]->(bank:银行)CREATE (:受益人 {ID: 5, 姓名: 'Emily', 地址: 'Toronto', 国籍: '加拿大'})CREATE (:受益人 {ID: 4, 姓名: 'Mike', 地址: 'Sydney', 国籍: '澳大利亚'})CREATE (:受益人 {ID: 9, 姓名: 'Hiroshi', 地址: 'Tokyo', 国籍: '日本'})
原创
发布博客 2024.03.01 ·
1717 阅读 ·
10 点赞 ·
1 评论 ·
11 收藏

图数据库 之 Neo4j - 应用场景3 - 知识图谱(8)

复杂关系的处理:知识图谱中的实体之间通常存在复杂的关系,如社交网络中的朋友关系、组织结构中的层级关系等。图数据库提供了高效的图查询语言和图算法,可以轻松地查询和遍历图数据,发现实体之间的复杂关联。它们使用节点和边来表示实体和关系,并提供了高效的图查询语言和图算法,以便更好地处理和分析图数据。推理和推荐功能:图数据库支持推理和推荐功能,可以通过定义规则和查询来推断新的关系和属性。节点和边可以具有属性,用于描述实体和关系的特征。高性能:图数据库使用专门的存储结构和查询优化技术,可以实现高效的图数据存储和查询。
原创
发布博客 2024.03.01 ·
1521 阅读 ·
19 点赞 ·
0 评论 ·
13 收藏

图数据库 之 Neo4j - 应用场景2 - 实时推荐引擎(7)

实时推荐引擎是在今天的竞争激烈市场中保持竞争力的关键。本文介绍了如何使用图技术构建一个基于用户行为和关联数据的实时推荐引擎,以提供个性化的建议。我们将探讨实时推荐引擎的背景和原理,并提供详细的操作步骤说明,帮助你构建自己的实时推荐引擎。使用图技术构建实时推荐引擎可以提供更准确、个性化和一些有意义的建议。通过分析用户行为和关联数据,可以更好地理解用户的兴趣和偏好,并提供与其当前上下文相关的个性化建议。这有助于提高用户满意度、增加销售额,并保持竞争力。
原创
发布博客 2024.02.19 ·
1241 阅读 ·
24 点赞 ·
0 评论 ·
19 收藏

图数据库 之 Neo4j - 应用场景1 - 欺诈检测(6)

总而言之,Neo4j是一种强大的图数据库,适用于各种行业和领域的关系数据密集型问题。它提供了高效的数据存储和查询机制,能够帮助用户发现隐藏在关系中的有价值的信息。Neo4j是一种图数据库,它专注于处理关系数据密集型的问题。由于其图结构的特性,Neo4j能够高效地存储、查询和分析连接数据。下面我们列举一些图数据库技术应用的案例。
原创
发布博客 2024.02.18 ·
1006 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

图数据库 之 Neo4j - Cypher语法基础(5)

在上一篇文章中介绍了图数据库中的包含的元素:节点,关系,标签,属性和路径。接下来我们将 Cypher 的语法基础。
原创
发布博客 2024.02.18 ·
726 阅读 ·
6 点赞 ·
0 评论 ·
14 收藏

图数据库 之 Neo4j - Browser 介绍(4)

Neo4j Browser 中有 3 个模块,侧边栏,Cypher 编辑器与结果栏,在进入 Neo4j Browser 时结果栏会展示欢迎界面。
原创
发布博客 2024.02.07 ·
2159 阅读 ·
24 点赞 ·
0 评论 ·
15 收藏

图数据库 之 Neo4j - 环境搭建(3)

v /data/neo4j/import:/var/lib/neo4j/import \ // 挂载数据导入目录。-v /data/neo4j/data:/data \ // 把容器内的数据目录挂载到宿主机的对应目录下。-v /data/neo4j/conf:/var/lib/neo4j/conf \ // 挂载配置目录。--env NEO4J_AUTH=neo4j/neo4jtest \ // 设定数据库的用户名和密码。-v /data/neo4j/logs:/logs \ // 挂载日志目录。
原创
发布博客 2024.02.07 ·
1136 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

图数据库 之 Neo4j - 图数据库基础(2)

图数据库是一种强调关系的非关系型数据库,它以图的形式存储数据,节点表示实体,边表示实体之间的关系。图数据库具有灵活的数据模型、高性能的查询和良好的可扩展性。它在社交网络分析、推荐系统、网络安全和生物信息学等领域都有广泛的应用。通过使用图数据库,我们可以更好地理解和处理复杂的关系数据,为应用程序提供更强大的数据管理和查询能力。
原创
发布博客 2024.02.07 ·
674 阅读 ·
9 点赞 ·
0 评论 ·
11 收藏

图数据库 之 Neo4j - 背景介绍(1)

在接下来的章节中,我们将探讨Neo4j的核心概念、应用领域、性能优化、可视化工具和部署管理等方面的内容,帮助大家更好地理解和应用Neo4j。Neo4j使用了一种称为“标签化属性图”的数据结构,以及高效的索引和缓存机制,从而实现了出色的查询性能和可扩展性。这种图数据模型非常适合表示和处理各种类型的关系,无论是社交网络中的好友关系,还是推荐系统中的用户兴趣关系,都可以轻松地表示和查询。与传统的关系型数据库不同,Neo4j以图的形式存储数据,其中节点表示实体,边表示实体之间的关系。
原创
发布博客 2024.02.07 ·
686 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

JVM性能调优 - 服务器性能排查(7)

在排查生产环境的性能问题时,以下是一些常见的步骤和技巧:监控系统资源:使用系统监控工具(如top、htop、nmon等)来监控服务器的CPU使用率、内存使用率、磁盘IO等系统资源情况。这可以帮助你了解系统的整体负载情况,是否存在资源瓶颈。分析日志:查看应用程序的日志文件,特别是错误日志和性能日志。错误日志可以帮助你找到潜在的问题,而性能日志可以提供关于请求处理时间、数据库查询时间等信息,帮助你定位性能瓶颈。
原创
发布博客 2024.02.06 ·
953 阅读 ·
10 点赞 ·
0 评论 ·
23 收藏

JVM 性能调优 - 常用的垃圾回收器(6)

编写代码运行程序命令行解释:-XX:+PrintCommandLineFlags 打印当前的配置参数-XX:+PrintGCDetails 打印 GC 日志根据提供的日志信息,可以看出使用的是 Parallel Scavenge(并行新生代垃圾收集器)和 Parallel Old(并行老年代垃圾收集器)这两种垃圾收集器。
原创
发布博客 2024.02.06 ·
1430 阅读 ·
11 点赞 ·
0 评论 ·
13 收藏

JVM 性能调优- 五种内存溢出(5)

在介绍之前先简单介绍下 直接内存(Direct Memory)和堆内存(Heap Memory):总结起来,直接内存和堆内存是Java中两种不同的内存区域,它们有着不同的分配方式、受限性、垃圾回收机制和性能特点。Java 中的内存溢出是很常见的场景,除了程序计数器外,JVM内存的其他几个运行时区域都有可能发生 OutOfMemoryError(OOM)异常。下面通过一些场景来验证JVM不同内存区域造成 OOM 的情况。
原创
发布博客 2024.02.06 ·
1573 阅读 ·
15 点赞 ·
0 评论 ·
30 收藏

JVM 性能调优 - 四种引用(4)

当垃圾回收时,强引用必定不会被回收,软引用只有在内存紧张时才会被回收,弱引用和虚引用必定被回收。
原创
发布博客 2024.02.05 ·
1556 阅读 ·
13 点赞 ·
0 评论 ·
19 收藏

JVM 性能调优 - 参数调优(3)

创建的 allocation1、allocation2、allocation3 分配到了 Eden 区,占用 6M,当分配 allocation4(需要4M) 时,因为新生代内总内存总共只有 9M(8M Eden 区 + 1M Suvivor 区) ,allocation4 不能放进 Eden 区,直接放到了老年代。大多数情况下,新创建的对象都会在新生代的 Eden 区中分配,当 Eden 区没有足够的空间分配时,虚拟机将会发生一次 Minor GC。默认情况下新生代占堆的 1/3,老年代占堆的 2/3。
原创
发布博客 2024.02.05 ·
1043 阅读 ·
23 点赞 ·
0 评论 ·
16 收藏

JVM 性能调优 - 参数基础(2)

即时编译模式(Just-In-Time Compilation Mode,JIT):在即时编译模式下,JVM会将热点代码(经常执行的代码)编译成本地机器代码,以提高执行速度。有关详细信息, 请参阅 http://www.oracle.com/technetwork/java/javase/documentation/index.html。有关详细信息, 请参阅 http://www.oracle.com/technetwork/java/javase/documentation/index.html。
原创
发布博客 2024.02.05 ·
1569 阅读 ·
14 点赞 ·
0 评论 ·
20 收藏

JVM 性能调优 - Java 虚拟机内存体系(1)

Java 虚拟机我们简称为 JVM(Java Virtual Machine)。Java 虚拟机在执行 Java 程序的过程中,会管理几个不同的数据区域。如下图所示:下面我会介绍这几个数据区的特点。
原创
发布博客 2024.02.05 ·
835 阅读 ·
8 点赞 ·
0 评论 ·
2 收藏

IDE使用卡顿排查处理

XX:ReservedCodeCacheSize 保留代码占用的内存容量参数。通过截图可知是由于 cpu 吃满。-Xms 是最小启动内存参数。-Xmx 是最大运行内存参数。
原创
发布博客 2024.01.25 ·
608 阅读 ·
10 点赞 ·
0 评论 ·
8 收藏

Storm 踩坑记

Storm 踩坑记
原创
发布博客 2023.06.06 ·
606 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多