M/R推测性的执行(Speculative execution)

4 篇文章 0 订阅
3 篇文章 0 订阅
  Hadoop系统有一个问题,它把任务分派到很多个节点,其中很有可能有一些慢的节点会限制剩下程序的执行速度。举个例子,如果有个节点内有一个比较慢的磁盘控制器,那它读取输入数据的速度可能只有所有其它节点的速度的10%。所以当99个map任务都已经完成了,系统仍在等待最后那个比较耗时的map任务完成。
  通过强迫任务独立运行于其它的任务,使得单个任务之间不会知道它们的输入数据来自哪里。任务相信Hadoop平台会派送合适的输入到它们那里。因此,对于相同的输入数据,我们可以并行多次处理以利用不同机器的负载能力。因为作业中大多数的任务都已经完成了,Hadoop平台会在几个空闲的节点上调度执行剩余任务的拷贝,这个过程叫做推测性的执行。当任务完成时,它会向JobTracker通告。任何一个首先完成的拷贝任务将成为权威拷贝,如果其他拷贝任务还在推测性的执行中,Hadoop会告诉TaskTracker去终止这些任务并丢弃它们的输出,接着Reducer会从首先完成的Mapper那里获取输入数据。

  推测性的执行默认是启用的,你可以通过设置JobConf中以下参数为false来禁用mapper和reducer的推测性的执行。

mapred.map.tasks.speculative.execution
mapred.reduce.tasks.speculative.execution

来源:http://www.cnblogs.com/spork/archive/2010/01/11/1644350.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值