【数字信号处理】离散信号与系统分析

一、常用的序列

1.单位脉冲序列

 单位脉冲序列是指仅仅在某一时刻有一个单位幅度的脉冲响应。

任意序列都可以用单位脉冲序列表示。

2.单位阶跃序列

单位阶跃序列是指从某一时刻起,以后所有的序列都是单位幅度的序列。

3.矩形序列

 

矩形序列是值从0到N-1共计N点的值。

4.指数序列

x[k]=a^{k},k\in Z

当且仅当只有a=\pm 1时该指数序列才是有界序列,序列无界则无法求卷积与DFT。

右边指数序列是指数序列与阶跃信号相乘,使指数序列只保留y轴右半部分序列。

出题:右边指数序列的卷积

5.正弦型序列和虚指数序列

正弦型序列与虚指数序列可以归为一类统计,因为这两个序列可以通过欧拉公式相互转化,在后面做题的时候也经常会有两种序列相互转化。

cos(\Omega k)=\frac{e^{j\Omega k}+e^{-j\Omega k}}{2}

sin(\Omega k)=\frac{e^{j\Omega k}-e^{-j\Omega k}}{2j}

正弦部分出题:判断正弦序列是否为周期序列,并求其周期。

\frac{\Omega}{2\Pi }=\frac{m}{N}

若m/N为不可约的整数(就是看看有没有Π,有Π就不是整数),则该正弦序列为周期序列,并且其周期为N.

二、序列的卷积和相关运算

两个离散序列的卷积定义:

y[k]=x_{1}[k]\ast x_{2}[k]=\sum_{n=-\infty }^{\infty }x_{n}[k]x_{2}[k-n]

两个序列相互卷积,将其中一个序列反转,之后左移N个序列,依次右移相乘求和。

y[k]的长度等于x1[k]与x2[k]的长度相加减一。

卷积的运算方法:

①排表法:

②定义法:

相关运算:

由于生活中的各种信号都可以看作是若干个正弦信号的叠加,因此一个信号可以分解为若干个频率和幅度都不相同的信号的和,这也可以叫做信号的频谱。

当某个频率的正弦信号在该信号中所占比重越大,该信号的形状就越接近于该频率信号的形状。当计算机需要求一个信号的频谱时就需要比对该信号与各个频率信号的相似程度,这个对比的过程就叫做相关。

r_{xy}[n]=\sum_{n=-\infty }^{\infty }x_{n}[k]x_{2}[k+n]

相关的公式与卷积类似,只是没有序列的反转。

序列可以相互之间求相关性,也可以自己与自己求相关性。

三、系统的分类

1.线性系统

线性系统是指一个系统的输入与输出满足均匀性与叠加性。

出题:判断系统是否为线性系统。

2.非时变系统

若系统的响应与信号输入的时间无关,则为非时变系统。

出题:判断系统是否为非时变系统,

3.因果系统

若一个信号的输出取决于输入信号之前,则其为非因果系统。

出题:判断系统是否为因果系统,

4.稳定系统

若输入有界,则输出也有界,则为稳定系统。

出题:判断系统是否为稳定系统,

四、离散时间信号的频域分析(重点)

前面说过,任意一个信号都可以看作若干个正弦信号的叠加,因此,我们可以用式子来将一个信号看作若干个频率信号的累加,所以:周期为N的离散序列\tilde{x}[k]可以写作N项虚指数序列的线性和,\tilde{X}[m]就是每个频率信号的幅度值,也是信号的频谱。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>