bzoj 1080 [SCOI2008]劣质编码 最短路

这题可以用一种迷之暴力水过,不过并不知道复杂度,听说跑的挺快的。。。
算了,说正解。。。
当要求有两种解码方式时可以这样做:
把两个串中长的那个当成模板串,短的那个当成匹配串。
f[i][j] 表示模板串当前为i,匹配串匹配到j,模板串的最短长度。
然后枚举匹配串下一个接哪个串,如果接完后比模板串长那么互换两个串。
这两个串必须从开始时就接不同的串。

然后三个串的情况。一个模板串,两个匹配串。
不过这时蛋疼的是可能有两个串接相同的串(不可能三个串接相同的串)。
这时可能是模板串和一个匹配串相等或两个匹配串相等。
然后就有三种情况。
剩下的和两个的情况基本相同。

#include <bits/stdc++.h>
using namespace std;
#define N 61
int n,ans,inf;
char s[N][N];
int same[N][N][N],len[N],f[N][N][N][3];
int inq[N][N][N][3];
struct node
{
    int x,l1,l2,tp;
    node(){}
    node(int x,int l1,int l2,int tp):x(x),l1(l1),l2(l2),tp(tp){}
    int& F(){return f[x][l1][l2][tp];}
    int& In(){return inq[x][l1][l2][tp];}
};
queue<node>q;
void ins(node x)
{
    f[x.x][x.l1][x.l2][x.tp]=0;
    q.push(x);
}
void upd(node x,int v,node y)
{
    if(y.F()>x.F()+v)
    {
        y.F()=x.F()+v;
        if(!y.In())
            q.push(y),y.In()=1;
    }
}
int main()
{
    freopen("tt.in","r",stdin);
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%s",s[i]+1);
        len[i]=strlen(s[i]+1);
        if(!len[i])return puts("0"),0;
    }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            for(int k=0;k<=len[i];k++)
            {
                for(int t=1;t<=len[j]&&t+k<=len[i];t++)
                {
                    if(s[i][t+k]!=s[j][t])break;
                    same[i][j][k]++;
                }
                same[i][j][k]=(same[i][j][k]>=min(len[j],len[i]-k));
            }
    memset(f,0x3f,sizeof(f));inf=f[0][0][0][0];
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(len[j]<=len[i]&&same[i][j][0])
                for(int k=1;k<=n;k++)
                    if(len[k]<=len[j]&&same[i][k][0]&&k!=i)
                    {
                        if(i==j&&j==k)continue;
                        if(i==j)ins(node(i,len[j],len[k],2));
                        else if(j==k)ins(node(i,len[j],len[k],1));
                        else ins(node(i,len[j],len[k],0));
                    }
    while(!q.empty())
    {
        node t=q.front();q.pop();
        inq[t.x][t.l1][t.l2][t.tp]=0;
        if(t.tp==0)
        {
            for(int i=1;i<=n;i++)
                if(same[t.x][i][t.l2])
                {
                    if(t.l2+len[i]<=len[t.x])
                    {
                        if(t.l2+len[i]<=t.l1)
                            upd(t,0,node(t.x,t.l1,t.l2+len[i],t.tp));
                        else upd(t,0,node(t.x,t.l2+len[i],t.l1,t.tp));
                    }
                    else upd(t,t.l2,node(i,len[t.x]-t.l2,t.l1-t.l2,t.tp));
                }
        }
        else if(t.tp==1)
        {
            for(int i=1;i<=n;i++)
                if(same[t.x][i][t.l1])
                {
                    if(t.l1+len[i]<=len[t.x])
                        upd(t,0,node(t.x,t.l1+len[i],t.l2+len[i],t.tp));
                    else upd(t,t.l1,node(i,len[i],len[t.x]-t.l1,2));
                }
            for(int i=1;i<=n;i++)
                if(same[t.x][i][t.l1])
                    for(int j=1;j<=n;j++)
                        if(j!=i&&len[j]<=len[i]&&same[t.x][j][t.l2]&&same[i][j][0])
                        {
                            if(t.l1+len[i]<=len[t.x])
                                upd(t,0,node(t.x,t.l1+len[i],t.l2+len[j],0));
                            else if(t.l2+len[j]>len[t.x])
                                upd(t,t.l1,node(i,len[j],len[t.x]-t.l1,0));
                            else upd(t,t.l1,node(i,len[t.x]-t.l1,len[j],0));
                        }
        }
        else
        {
            for(int i=1;i<=n;i++)
                if(same[t.x][i][t.l2])
                {
                    if(t.l2+len[i]<=len[t.x])
                        upd(t,0,node(t.x,t.l1,t.l2+len[i],t.tp));
                    else upd(t,t.l2,node(i,len[t.x]-t.l2,len[t.x]-t.l2,1));
                }
        }
    }
    ans=inf;
    for(int i=1;i<=n;i++)
        ans=min(ans,f[i][len[i]][len[i]][0]+len[i]);
    if(ans==inf)puts("-1");
    else printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值