Python下遥感图像文件的读写

这篇博客记录了使用Python进行遥感图像文件的读取,特别是读取Geotiff文件的过程。在尝试显示栅格数据时遇到了'too many indices for array'的问题,解决方法是删除针对单波段数据的多余索引。博客还提到了栅格数据的关键组成部分,包括像元值、像元大小、波段数以及空间参考和仿射变换。
摘要由CSDN通过智能技术生成

python学习记录

图像文件的读写

记录下自己的一点学习

读取Geotiff

from osgeo import gdal
import numpy as np
dataset=gdal.Open("fdem.tif") #打开文件
im_width = dataset.RasterXSize #栅格矩阵的列数
im_height = dataset.RasterYSize #栅格矩阵的行数
im_bands = dataset.RasterCount #波段数
im_geotrans = dataset.GetGeoTransform() #仿射矩阵,左上角像素的大地坐标和像素分辨率
im_proj = dataset.GetProjection() #地图投影信息,字符串表示
im_data = dataset.ReadAsArray(0,0,im_width,im_height)
type(im_data),im_data.shape
del dataset
#显示栅格数据
print im_data[0, 10:15,20:25] #查看波段 0,10~14 行和 20~25 列的数据
print im_geotrans

显示栅格的时候有问题too many indices for array,实验用的数据是单波段因此删掉print im_data[0, 10:15,20:25] 中的波段0可以正常运行。

#判断栅格数据的数据类型
if 'int8' in im_data.dtype.name:
 datatype = gdal.GDT_Byte
elif 'int16' in im_data.dtype.name:
 datatype = gdal.GDT_UInt16
else:
 datatype = gdal.GDT_Float32
#判读数组维数
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值