【转载】RoIPooling、RoIAlign笔记 RoIPooling这个可以在Faster RCNN中使用以便使生成的候选框region proposal映射产生固定大小的feature map。先贴出一张图,接着通过这图解释RoiPooling的工作原理针对上图Conv layers使用的是VGG16,feat_stride=32(即表示,经过网络层后图片缩小为原图的1/32),原图800∗800800*800800∗800,最后一层特征图feature map大小:25∗2525*2525∗25假定原图中有一region proposa
记第一次Faster RCNN调试过程 本文仅做记录,供本人私下查阅。调试Faster RCNN的初衷是进行光学镜片表面疵病质检项目,找到了一个Faster RCNN开源代码,github地址:https://github.com/jwyang/faster-rcnn.pytorch,master分支使用的是pythorc0.4.0,与GPU服务器上的环境不匹配导致CUDA编译失败。最后选择的是pytorch-1.0分支,在GPU服务器上调试成功,项目位于根目录下,项目名称为faster-rcnn.pytorch-pytorch-1.0,使用的
【转载】CentOS7安装NVIDIA显卡驱动 预、查询命令1、Linux查看显卡信息:(ps:若找不到lspci命令,可以安装 yum install pciutils)lspci | grep -i vga2、使用nvidia GPU可以:lspci | grep -i nvidia3、查看显卡驱动cat /proc/driver/nvidia/version一、前提准备1.安装依赖环境:yum install kernel-devel gcc -y2.检查内核版本和源码版本,保证一致ls /boot | grep v
【转载】目标检测RCNN算法详解 本文为转载博客,原博客地址:https://blog.csdn.net/shenxiaolu1984/article/details/51066975Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recogn
【转载】如何用Python发送Email邮件? 文章目录综述连接SMTP服务器登录SMTP服务器如何获得邮箱授权码通过SSL登录SMPT服务器发送\抄送文本邮件密送文本邮件发送HTML邮件参考综述用代码发送Email,在很多场景下都有使用需求。基本思路是,代码准备好要发送的内容,然后连接发送邮箱的SMTP服务器,通过SMTP服务器将Email发送出去。比如,网站服务器定时发送解析log后的统计数据给维护人员,定期备份的数据库并通过邮件发送给管理人员,企业每个月发工资条邮件等等,这些需求很常见,甚至是基本需要。本文介绍如何通过Python代码实现发送
【转载】python装饰器--看这一篇就够了 讲 Python 装饰器前,我想先举个例子,虽有点污,但跟装饰器这个话题很贴切。每个人都有的内裤主要功能是用来遮羞,但是到了冬天它没法为我们防风御寒,咋办?我们想到的一个办法就是把内裤改造一下,让它变得更厚更长,这样一来,它不仅有遮羞功能,还能提供保暖,不过有个问题,这个内裤被我们改造成了长裤后,虽然还有遮羞功能,但本质上它不再是一条真正的内裤了。于是聪明的人们发明长裤,在不影响内裤的前提下,直接把长裤套在了内裤外面,这样内裤还是内裤,有了长裤后宝宝再也不冷了。装饰器就像我们这里说的长裤...
【记录】记录第一次使用tensorflow serving全过程 文章目录1. 使用Docker安装TF serving1.1 安装Docker1.2 安装TF Serving2. 使用自己训练的模型2.1 ckpt 2 pb2.2 pb 2 saved_model3. 向该docker TF Serving 传递参数,进行预测在完成模型的训练之后,要将其部署到公司的CPU服务器上,为解决这一问题,谷歌发布了TensorFlow (TF) Serving,希望能解决ML模型部署到生产的一系列问题。本文不对tensorflow serving进行介绍,仅仅是记录自己使用
营业执照识别项目记录--CTPN使用 文章目录1. 校验--判别用户上传图片是否为营业执照2. 文字区域检测---CTPN算法2.1 CTPN算法原理2.2 直接使用CTPN预训练模型2.2 使用自己的数据训练CTPN模型参考:1. 校验–判别用户上传图片是否为营业执照这一部分目前有两个已实现的方案:使用SIFT特征点检测方法,将用户上传图片与营业执照图片模板进行SIFT方法匹配,之后因为速度原因,将整个营业执照的模板改变为只有“营业执照”四个字的模板,速度从8s左右提升至1s以内。但是因为模板的改变,会存在偶尔识别错误的情况。另,我对
推荐系统基础 文章目录1. 概述2. 基于人口统计学的推荐3. 基于内容的推荐4. 基于协同过滤的推荐4.1 基于用户的协同过滤算法4.2 基于项目\物品的协同过滤算法4.3 基于模型的协同过滤算法5. 冷启动问题6. 推荐系统需要考虑的其他问题6.1 [时间上下文问题](https://www.jianshu.com/p/b80b0e7b041c)6.2 [one-hot编码带来的问题](https://www.jianshu.com/p/152ae633fb00)7. 混合的推荐机制8. 推荐系统常用的评估指标参考
NLP基础--single-pass 聚类算法 文章目录1. k-means聚类2. single-pass 聚类参考在介绍single-pass聚类方法之前,我们先来了解一下最有名的聚类算法k-means。1. k-means聚类所谓聚类算法是指将一堆没有标签的数据自动划分成几类的方法,属于无监督学习方法,这个方法要保证同一类的数据有相似的特征,根据样本之间的距离或者说是相似性(亲疏性),把越相似、差异越小的样本聚成一类(簇),最后形成多个簇,使同一个簇内部的样本相似度高,不同簇之间差异性高。聚类算法有很多种(几十种),K-Means是聚类算法
NLP 基础--word2vec + text-cnn Demo 文章目录1.数据处理1.1 数据集1.2 数据预处理2. 文本卷积神经网络3. 模型训练4. 总结本文是在文本分类实战(二)—— textCNN 模型这个博客的基础上进行的。1.数据处理1.1 数据集首先,数据集是采用的IMDB 电影影评,总共有三个数据文件,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),但是在训练word2vec词向量模型(无监督学习)时可以
NLP基础---LDA 文章目录1. 几个分布和共轭的概念2. pLSA2.1 pLSA模型下生成文档2.2 根据文档反推其主题分布3. LDA模型3.1 pLSA跟LDA的对比:生成文档与参数估计3.2 pLSA跟LDA的概率图对比3.3 Gibbs采样参考:1. 几个分布和共轭的概念在了解LDA之前,需要先来简单了解几个分布和共轭的概念。我们需要先介绍一个概念——共轭先验(Conjugate Prior)。Conjugate Prior: In Bayesian probability theory, if the
【转载】Python判断两个list是否是父子集关系 ist1 和list2 两个list , 想要得到list1是不是包含 list2 (是不是其子集 )a = [1,2]b = [1,2,3]c = [0, 1] set(b) > set(a)set(b) > set(c) 结果:TrueFalse
【转载】LaTex 符号命令大全 函数、符号及特殊字符声调语法效果语法效果语法效果\bar{x}\acute{\eta}\check{\alpha}\grave{\eta}\breve{a}\ddot{y}\dot{x}\hat{\alpha}\tilde{\iota}函数语法效果语法效果语法效果\sin\theta\cos\theta\tan\theta\arcsin\frac{L}{r}\arccos\f...
tf.estimator.train_and_evaluate 详解 TensorFlow 版本:1.11.0在 TensorFlow 1.4 版本中,Google 新引入了一个新 API:tf.estimator.train_and_evaluate。提出这个 API 的目的是:代替 tf.contrib.learn.Experiment。1. tf.estimator.train_and_evaluate 简介train_and_evaluate API 用来 train 然后 evaluate 一个 Estimator。调用方式如下:tf.estimat...
NLP基础--文本卷积神经网络text-cnn 在熟悉卷积神经网络之后,再看文本卷积神经网络就很简单。一个经典的图就可以说明。输入:如下图,我们可以看到一句话"I like this movie very much!",每个单词使用一个shape为1*5的行向量表示,然后这7个单词以垂直方式堆积成一个二维矩阵。该二维矩阵的shape为count(单词)*5。卷积核:输入确定之后,后面的一层中展示的是3个不同尺寸的卷积核,分别为2个45、2个35和2个2*5的卷积核。可以看出来,卷积核的一个维度是确定的,与词向量的维度d相等。那么这里的卷积就不
NLP基础--word2vec的使用Demo 文章目录1.python自带word2vec包的使用1.1 中文分词1.2 word2vec2. gensim之word2vec的使用参考在网上搜到有直接使用python自带word2vec包,也有使用gensim中的word2vec包。下面就介绍这两种方法。首先说明我的环境:使用Ubuntu16,python2.1.python自带word2vec包的使用数据:来源于搜狗实验室的搜狐新闻数据。下载的是完整版,如下图。下载下来的文件名为news_sohusite_xml.full.tar.gz。
NLP基础--中文分词、去停用词小Demo 1. 使用jieba对中文进行分词、去停用词ChnSentiCorp_htl_all数据集下载自:https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/ChnSentiCorp_htl_all/intro.ipynb这个数据集有7000 多条酒店评论数据,5000 多条正向评论,2000 多条负向评论。数据大概长下面的样子:第一列是lable,取0或1。0表示负面评价,1表示正面评价。第二列是评论内容。在本文这个小Demo