1、激活函数的作用:使特征值变为y=f(x)形式
2、num_output最后一个是表示分类的种类;前面一些num_output是卷积模板数,即滤波器个数;
可以考虑修改num_output的个数,即修改滤波器的个数,来观察模型是否有变化
3、BN只是做了计算均值和方差;scale是做了对归一化后的x进行缩放比例和位移
4、模型最后两层“softmaxWithLoss”和“Accuracy”可以互换位置,前面的那些模型的layer顺序是固定的
5、test的方式:
不同分布的test:
$Tools/caffe test -model=用于训练的网络模型文件的路径 -weights 用于测试的模型的路径 -gpu 1
注意:此处不需要solver文件,直接用网络模型定义文件,此文件只是test路径修改一下
deploy文件的用途:自己写C文件test 的时候用
6、在covn中有两个param{
lr_mult:1
decay_mult:1 #权值衰减
}
一个是表示权重学习率,另外一个是偏置的:学习率是lr* lr_mult;
7、查看是否出错可以看日志,修改模型的时候要保证输出concat的时候n*c*width*heigth中 width*heigth的值一致
本文介绍了深度学习模型中激活函数的作用及num_output参数的意义,解释了BN层和scale层的功能,并探讨了softmaxWithLoss与Accuracy层的位置关系。此外还讨论了测试模型的方法以及conv层参数设置的重要性。
876

被折叠的 条评论
为什么被折叠?



