【bzoj1061】 Noi2008—志愿者招募

http://www.lydsy.com/JudgeOnline/problem.php?id=1061 (题目链接)

题意:给定n天,第i天需要ai个志愿者,有m类志愿者,每类志愿者工作时间为[l,r],花费为ci,求最小花费。

Solution
  我用的是线性规划单纯形法。
  首先要用线性规划的对偶性构造出标准形式的线性规划。对偶性是什么呢。
  

  给定一个最大化目标的线性规划,我们应该描述如何形式化一个对偶线性规划,其中目标是最小化,而且最优值与初始线性规划的最优值相同。当表示对偶性规划时,我们称初始的线性规划为原始线性规划。
  为了构造对偶问题,我们将最大化改为最小化,交换右边系数与目标系数,并且将小于等于改为大于等于。原始问题的m个越是,每一个在对偶问题中都有一个对应的变量yi,对偶问题的n个约束,每一个在原始问题中都有一个对应的变量xj。

——算法导论

这里写图片描述

  所以这道题就很好做了对吧,裸的单纯形法。

代码:

// bzoj1061
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
#define eps 1e-7
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
    LL x=0,f=1;char ch=getchar();
    while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

const int maxn=1010,maxm=10100;
int n,m;
double v,a[maxm][maxn],b[maxm],c[maxn];

void Pivot(int l,int e) {
    b[l]/=a[l][e];
    for (int i=1;i<=n;i++) if (i!=e) a[l][i]/=a[l][e];
    //a[l][e]=1/a[l][e];
    for (int i=1;i<=m;i++)
        if (i!=l && fabs(a[i][e])>eps) {
            b[i]-=a[i][e]*b[l];
            for (int j=1;j<=n;j++) if (j!=e) a[i][j]-=a[i][e]*a[l][j];
            a[i][e]=-a[i][e]*a[l][e];
        }
    v+=c[e]*b[l];
    for (int i=1;i<=n;i++) if (i!=e) c[i]-=c[e]*a[l][i];
    c[e]=-c[e]*a[l][e];
}
double Simplex() {
    int l,e;
    while (1) {
        for (e=1;e<=n;e++) if (c[e]>eps) break;
        if (e==n+1) return v;
        double tmp=inf;
        for (int i=1;i<=m;i++)
            if (a[i][e]>eps && b[i]/a[i][e]<tmp) tmp=b[i]/a[i][e],l=i;
        if (tmp==inf) return inf;
        Pivot(l,e);
    }
}
int main() {
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++) scanf("%lf",&c[i]);
    for (int i=1,x,y,z;i<=m;i++) {
        scanf("%d%d%d",&x,&y,&z);
        for (int j=x;j<=y;j++) a[i][j]=1;
        b[i]=z;
    }
    printf("%d",(int)(Simplex()+0.5));
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值