【论文阅读】2023 MTS-Mixers

文章提出MTS-Mixer模型,针对Transformer在处理时间序列数据时的局限,如注意力机制非必需及冗余问题,MTS-Mixer采用两种因子化模块有效捕获时间与通道相关性。实验证明,MTS-Mixer在效率和性能上超过基于Transformer的现有模型,尤其适用于多元时间序列的低秩特性建模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2023,华为 

1. 简介

由于擅长捕获了长期依赖性,基于Transformer的模型最近取了很多进展,也是研究的热点。但是作者发现Attention机制有以下问题(1)对于捕获时间相关,注意力机制性不是必需的(2)时间和channel的交互作用的捕获中的纠缠和冗余影响了预测性能,(3)对输入和预测序列之间的映射进行建模很重要。为此,我们提出了MTS混合器,它使用两个因子化模块来捕获时间和信道相关性。在多个真实数据集上的实验结果表明,MTS Mixer以更高的效率优于现有的基Transformer的模型。

如下图所示,多元时间序列无论是在temporal维度还是channel维度,都存在比较强的冗余性。这些冗余性都表明,大多数多元时间序列都存在低秩性,即只用一小部分数据就可以表示出近似完整的原始矩阵。利用这个性质,可以简化多多元时间序列的建模。

                          

 

2. MTS-Mixer模型

MTS-Mixer的模型结构如下,第二列是一个抽象结构,后面3列是具体的实现方法

这三种实现方式的整体计算逻辑可以表示为如下形式,时间维度信息提取+空间维度信息提取+信息融合和输出映射


Attention-based MTS-Mixer

Random matrix MTS-Mixer

Factorized temporal and channel mixing

 

 

3. 实验结果

论文对比了MTS-Mixer和多种模型的效果,基本都达到了SOTA效果

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值