方橙
码龄15年
关注
提问 私信
  • 博客:979,428
    979,428
    总访问量
  • 55
    原创
  • 366,174
    排名
  • 604
    粉丝
  • 1
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2009-11-19
博客简介:

方橙

查看详细资料
个人成就
  • 获得267次点赞
  • 内容获得30次评论
  • 获得625次收藏
创作历程
  • 36篇
    2014年
  • 19篇
    2013年
成就勋章
TA的专栏
  • 线性代数
    49篇
  • 分形几何
  • 微积分
  • 概率论
  • 数字图像处理
  • 力学笔记
  • 编程珠玑读书笔记
  • 算法导论
    6篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

355人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

算法导论笔记(六) :桶排序及其C++实现

1 桶排序简介2 桶排序过程3 完整代码
原创
发布博客 2014.07.11 ·
1471 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

算法导论笔记(五) :基数排序与C++实现

算法导论笔记(五) :基数排序
原创
发布博客 2014.07.11 ·
1248 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法导论笔记(四) : 计数排序

1 计数排序概述2 计数排序执行过程3 代码实现
原创
发布博客 2014.07.09 ·
1159 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

算法导论笔记(三) : 快速排序

1 快速排序简介2 快速排序过程3 代码实现4 性能分析
原创
发布博客 2014.07.09 ·
1022 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法导论笔记(二) : 优先级队列

1 堆与优先级队列2 优先级队列
原创
发布博客 2014.07.08 ·
1051 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

算法导论笔记(一) :堆排序

1 完全二叉树与堆一颗高度为h的树.如果前h-1层为满二叉树,并且第h层的叶子节点均集中在左侧.这样的树称为完全二叉树.堆可以被视为完全二叉树.给定了每个节点的下标i,其父节点PARENT(i),左儿子LEFT(i)和右儿子(i)的下标可以简单的被计算出来:2 堆的数组表示堆可以表示为一个完全二叉树 或者一个数组.圆圈内是节点的值,圆圈上是节点在数组中的位置.根节点的高度为
原创
发布博客 2014.07.08 ·
840 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

线性代数(五十二) : 对角化与惯性律

本节介绍将二次型转化为对角矩阵.1 对角化
原创
发布博客 2014.04.08 ·
2067 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

线性代数(五十一) : 自伴随映射与二次型

线性代数(四十二) : 伴随矩阵
原创
发布博客 2014.04.03 ·
4341 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

线性代数(五十) :向量积

线性代数(五十) :向量积
原创
发布博客 2014.04.01 ·
3496 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

线性代数(四十九) : 希尔伯特-施密特范数

本节介绍希尔伯特-施密特范数,它是矩阵的范数的一个简单而有用的上界1 希尔伯特-施密特范数设矩阵A=(aij),则以下式子称为A的希尔伯特-施密特范数(Hilbert-Schmidt Norm):它是A的范数的一个上界.下边以实矩阵为例证明它是上界:设mxn的实矩阵A:对任意:则y的分量可用x的分量表示:利用施瓦兹不等式估计上式右端的
原创
发布博客 2014.04.01 ·
10291 阅读 ·
5 点赞 ·
0 评论 ·
14 收藏

线性代数(四十八) : 谱半径

本节介绍复欧几里得空间映射到其自身的矩阵.给出其范数的一个简单而有用的下界.该矩阵范数的定义同实欧几里得空间.0 说明:本节以下的研究都是针对复欧几里得空间到自身的映射1 范数2 特征值设A为任意的复方阵.h为A的一个长度为1的特征向量.a为对应的特征值.则:由于:该式对任意特征值成立,于是有:其中ai取遍A的全体特征
原创
发布博客 2014.04.01 ·
5058 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

线性代数(四十七) : 复欧几里得空间

本节简单介绍复欧几里得空间的结构.0 共轭复数两个实部相等,虚部互为相反数的复数互为共轭复数.z的共轭复数记做:1 复欧几里得空间标量积2 复欧几里得空间的矩阵伴随若:则根据标量积的定义:也可以写作:即:即矩阵A的伴随等于其转置的复共轭.3 定义复欧几里得空间与标量积设X为复数域上的线性空间,如
原创
发布博客 2014.04.01 ·
3194 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

线性代数(四十六) : 完备性与局部紧致性

线性代数(四十八) : 线性映射的范数
原创
发布博客 2014.03.31 ·
5063 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

线性代数(四十五) : 线性映射的范数

本节定义衡量线性映射或者说矩阵的大小的一个概念:范数.1 上确界设A是欧几里得空间X到另一欧几里得空间U的线性映射.我们知道实数的任何有界子集都存在最小的上节,称为上确界简记为sup.对于任意向量x,和线性映射A,Ax的每个分量都是x的分量的线性组合.当向量x的长度为1的时候。Ax的长度就构成了一个有界数集.这个数集的上确界就称为矩阵A的范数.定义:(1)式2 矩阵
原创
发布博客 2014.03.30 ·
5263 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

线性代数(四十四) : 正交矩阵

线性代数(四十六) : 正交群
原创
发布博客 2014.03.29 ·
5593 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

线性代数(四十三) : 等距映射

本节介绍等距映射 为正交群做准备.1 等距映射M是欧几里得空间到自身的映射.如果对任意x,y有:则称M为等距映射,最简单的等距映射的例子是平移:2 等距映射的性质(i) 等距映射的复合仍是等距映射(根据定义,易证)(ii)对任意等距映射都存在某个平移,使得两者复合后的映射将0映射为0.(iii)任意一个等距映射都可以拆为一个平移和一个将0映射为0的等距映
原创
发布博客 2014.03.29 ·
9621 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

线性代数(四十二) : 超定方程组

如果一个线性方程组的方程数大于其未知数的个数,这样的方程组就叫做超定方程组(Overdetermined System).1 超定方程对于未知量:很多时候我们不能直接测得他们的值.却可以测得他们的某些线性组合:假设可以得到m个这样的线性组合,则可以构造方程组:其中为各线性组合的测量值,A为mxn的矩阵,我们需要检查测量值个数m是否大于我们
原创
发布博客 2014.03.27 ·
13651 阅读 ·
2 点赞 ·
1 评论 ·
39 收藏

线性代数(四十一) : 伴随矩阵

线性代数(四十一) : 正交投影
原创
发布博客 2014.03.26 ·
9878 阅读 ·
8 点赞 ·
1 评论 ·
7 收藏

线性代数(四十) : 正交补与正交投影

线性代数(四十) : 正交补
原创
发布博客 2014.03.25 ·
17416 阅读 ·
7 点赞 ·
0 评论 ·
25 收藏

线性代数(三十九) :格拉姆-施密特正交化与标准正交基

本节介绍正交的概念,以及将基变为正交基的格拉姆-施密特(Gram-Schmidt)方法0 回顾正交基1 正交如果向量x,y满足:则称x与y正交(orthogonal)或者垂直(perpendicular),记做:2 标准正交基设X是具有欧几里得结构的有限维线性空间则称这组基是标准正交的(orthonormal)3 格拉姆-施密特方法具有欧
原创
发布博客 2014.03.24 ·
15132 阅读 ·
5 点赞 ·
0 评论 ·
12 收藏
加载更多