算法导论笔记(一) :堆排序 1 完全二叉树与堆一颗高度为h的树.如果前h-1层为满二叉树,并且第h层的叶子节点均集中在左侧.这样的树称为完全二叉树.堆可以被视为完全二叉树.给定了每个节点的下标i,其父节点PARENT(i),左儿子LEFT(i)和右儿子(i)的下标可以简单的被计算出来:2 堆的数组表示堆可以表示为一个完全二叉树 或者一个数组.圆圈内是节点的值,圆圈上是节点在数组中的位置.根节点的高度为
线性代数(四十九) : 希尔伯特-施密特范数 本节介绍希尔伯特-施密特范数,它是矩阵的范数的一个简单而有用的上界1 希尔伯特-施密特范数设矩阵A=(aij),则以下式子称为A的希尔伯特-施密特范数(Hilbert-Schmidt Norm):它是A的范数的一个上界.下边以实矩阵为例证明它是上界:设mxn的实矩阵A:对任意:则y的分量可用x的分量表示:利用施瓦兹不等式估计上式右端的
线性代数(四十八) : 谱半径 本节介绍复欧几里得空间映射到其自身的矩阵.给出其范数的一个简单而有用的下界.该矩阵范数的定义同实欧几里得空间.0 说明:本节以下的研究都是针对复欧几里得空间到自身的映射1 范数2 特征值设A为任意的复方阵.h为A的一个长度为1的特征向量.a为对应的特征值.则:由于:该式对任意特征值成立,于是有:其中ai取遍A的全体特征
线性代数(四十七) : 复欧几里得空间 本节简单介绍复欧几里得空间的结构.0 共轭复数两个实部相等,虚部互为相反数的复数互为共轭复数.z的共轭复数记做:1 复欧几里得空间标量积2 复欧几里得空间的矩阵伴随若:则根据标量积的定义:也可以写作:即:即矩阵A的伴随等于其转置的复共轭.3 定义复欧几里得空间与标量积设X为复数域上的线性空间,如
线性代数(四十五) : 线性映射的范数 本节定义衡量线性映射或者说矩阵的大小的一个概念:范数.1 上确界设A是欧几里得空间X到另一欧几里得空间U的线性映射.我们知道实数的任何有界子集都存在最小的上节,称为上确界简记为sup.对于任意向量x,和线性映射A,Ax的每个分量都是x的分量的线性组合.当向量x的长度为1的时候。Ax的长度就构成了一个有界数集.这个数集的上确界就称为矩阵A的范数.定义:(1)式2 矩阵
线性代数(四十三) : 等距映射 本节介绍等距映射 为正交群做准备.1 等距映射M是欧几里得空间到自身的映射.如果对任意x,y有:则称M为等距映射,最简单的等距映射的例子是平移:2 等距映射的性质(i) 等距映射的复合仍是等距映射(根据定义,易证)(ii)对任意等距映射都存在某个平移,使得两者复合后的映射将0映射为0.(iii)任意一个等距映射都可以拆为一个平移和一个将0映射为0的等距映
线性代数(四十二) : 超定方程组 如果一个线性方程组的方程数大于其未知数的个数,这样的方程组就叫做超定方程组(Overdetermined System).1 超定方程对于未知量:很多时候我们不能直接测得他们的值.却可以测得他们的某些线性组合:假设可以得到m个这样的线性组合,则可以构造方程组:其中为各线性组合的测量值,A为mxn的矩阵,我们需要检查测量值个数m是否大于我们
线性代数(三十九) :格拉姆-施密特正交化与标准正交基 本节介绍正交的概念,以及将基变为正交基的格拉姆-施密特(Gram-Schmidt)方法0 回顾正交基1 正交如果向量x,y满足:则称x与y正交(orthogonal)或者垂直(perpendicular),记做:2 标准正交基设X是具有欧几里得结构的有限维线性空间则称这组基是标准正交的(orthonormal)3 格拉姆-施密特方法具有欧