【图像加密】基于安全力量(SF)加密算法实现图像加密附matlab代码

 ✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

图像加密作为信息安全领域的重要组成部分,在保护数字图像的机密性、完整性和可用性方面扮演着关键角色。随着数字图像在各个领域的广泛应用,对高效、安全、可靠的图像加密算法的需求日益增长。本文将深入探讨基于安全力量(SF)加密算法的图像加密实现,并结合Matlab代码进行详细分析,阐述其原理、流程以及优缺点。

安全力量(SF)算法,作为一种新型的混沌映射加密算法,其核心思想是利用混沌系统对初始图像进行非线性变换,从而实现图像数据的有效加密。与传统的加密算法相比,SF算法具有密钥空间大、密钥敏感性强、抗攻击能力强等优点。其安全性主要依赖于混沌映射的复杂性和不可预测性,即使是微小的密钥变化也会导致密文发生巨大的差异。这使得攻击者难以通过穷举法或其他手段破译加密图像。

SF算法通常包含以下几个关键步骤:

一、图像预处理: 首先,需要对输入的图像进行预处理,例如灰度化、图像大小调整等。这步操作的目的是为了简化后续的加密过程,并提高算法的效率。对于彩色图像,通常需要将其转换为灰度图像,以降低计算复杂度。图像大小的调整则取决于算法的具体要求和硬件资源的限制。

二、混沌映射生成: SF算法的核心在于利用混沌映射产生伪随机数序列。常用的混沌映射包括Logistic映射、Tent映射、Chebyshev映射等。这些映射具有对初始条件和系统参数高度敏感的特点,即使微小的变化也会导致输出序列的巨大差异。选择合适的混沌映射以及参数设置是保证算法安全性的关键。 此步骤通常需要迭代计算,生成足够长度的伪随机数序列,以满足图像加密的需求。 选择的混沌映射函数及其参数将直接影响加密算法的性能和安全性。

三、图像像素置乱: 基于生成的伪随机数序列,对图像像素进行置乱操作。 常用的置乱方法包括:

  • 基于位置的置乱: 利用伪随机数序列生成新的像素位置,并将原图像像素按照新的顺序重新排列。

  • 基于像素值的置乱: 根据伪随机数序列对图像像素值进行变换,例如异或操作、加法操作等。

这两种方法可以单独使用,也可以结合使用,以提高加密算法的安全性。 像素置乱的目的是为了破坏图像的统计特性,使得攻击者难以通过统计分析的方法获取图像信息。

四、图像像素扩散: 像素置乱后,需要进一步进行像素扩散,以增强图像的抗攻击能力。扩散操作通常是将一个像素的值与其相邻像素的值进行关联,使得图像像素之间的相关性更加复杂,从而提高破译难度。 常见的扩散方法包括:

  • 基于邻域的扩散: 将像素值与其周围像素的值进行混合,例如利用平均值、加权平均值等。

  • 基于迭代的扩散: 重复进行像素值混合,以增强扩散效果。

扩散操作的目的是将图像信息更充分地分散到整个图像中,使得局部信息的泄露不会导致全局信息的泄露。

五、密文生成: 经过置乱和扩散操作后,生成的图像即为加密后的密文图像。
img = imread('image.png');
img = rgb2gray(img); % 灰度化

% 生成伪随机数序列 (此处使用简化的Logistic映射,实际应用需更复杂的混沌映射)
r = 0.1; % 初始值
x = [];
for i = 1:numel(img)
r = 4 * r * (1 - r);
x = [x, r];
end

% 像素置乱 (简化示例)
img_shuffled = img(randperm(numel(img)));
img_shuffled = reshape(img_shuffled, size(img));

% 像素扩散 (简化示例)
img_diffused = img_shuffled + round(x' .* 255);
img_diffused = max(0, min(255, img_diffused)); % 限制像素值在0-255之间

% 显示密文图像
imshow(img_diffused, []);
imwrite(uint8(img_diffused), 'encrypted_image.png');

算法优缺点分析:

优点:

  • 高安全性: 基于混沌映射的非线性特性,具有较大的密钥空间和较高的密钥敏感性。

  • 高效性: 相对而言,计算复杂度较低,适合于实时应用。

  • 可扩展性: 可以通过选择不同的混沌映射和参数组合,以及不同的置乱和扩散方法,来适应不同的安全需求。

缺点:

  • 密钥管理: 需要安全地存储和管理密钥,密钥的泄露会直接导致图像被破译。

  • 参数选择: 混沌映射的参数选择对算法的安全性有重要影响,需要仔细选择合适的参数。

  • 简化模型: 以上代码仅为简化示例,实际应用中需要更复杂的混沌映射和更有效的置乱和扩散算法,以增强安全性。

总结:

本文介绍了基于安全力量(SF)加密算法的图像加密实现,并给出了简化的Matlab代码示例。 实际应用中,需要根据具体的安全需求选择合适的混沌映射、参数设置、置乱和扩散算法。 同时,需要加强密钥管理和算法的安全性分析,以确保图像加密的可靠性。 未来的研究可以关注如何进一步提高算法的安全性、效率和抗攻击能力,以及如何结合其他密码技术,构建更加完善的图像加密体系。 此外,对不同混沌映射和参数组合的安全性进行更深入的分析和评估也是重要的研究方向。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值