【缺陷识别】基于支持向量机SVM实现金属表面缺陷分类与测量(带面板)附Matlab代码和论文

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

1. 题目内容及要求

1.1题目内容

金属板广泛应用在工业生产与生产生活的各方面。由于金属板制造过程涉及到的设备、工艺等多因素的影响,金属板表面容易出现种类较多、形态各异的缺陷,这些缺陷对金属板的耐磨性、抗腐蚀性、电磁特性及美观性都会造成不同程度的影响,最终影响金属板的电磁特性和涂镀效果。因此对于生产金属板的企业来说,表面缺陷检测是必不可少的一个工序,一方面可以通过表面缺陷检测及时检测到缺陷产品,保证所产金属板的质量,维护企业的信誉,另一方面也可以通过分析检测结果及时发现生产过程中存在的问题,并及时解决[1]。我们将依据网上提供的金属表面缺陷照片数据集为图片来源,构造相应的算法对金属表面的缺陷进行检测,识别,分类与大小测量。

1.2题目要求

金属表面缺陷识别与分类有以下具体要求:

(1)依据金属表面缺陷图片的特性,对图片进行适当的灰度变换(对比度增强与滤波处理);

(2)对金属表面缺陷图片进行全局优化阈值分割;

(3)提取二值图片区域边界坐标;

(4)对金属缺陷进行特征提取;

(5)对金属缺陷进行分类有监督训练;

(6)完成对金属缺陷类型的判断与位置大小的计算;

(7)完成金属缺陷检测的GUI设计。

2.题目分析

我们查阅相关资料了解到常见的金属表面缺陷主要有如下几种,其分别是:细裂纹(crazing),表面杂质(inclusion),斑点(patches),麻点(pitted surface),轧入氧化皮(rolled-in scale)与划痕(scratches)。其分别对应图(a)-图(f)。

图2-1 金属表面缺陷分类

我们只考虑其中的三种类型:表面斑点(图b),表面轧入氧化皮(图(e))与表面划痕(图(f))。

图像处理的主要步骤有:对比度增强,滤波处理,阈值分割,形态学处理,特征提取,分类训练,缺陷位置大小计算及GUI集成操作显示。

Step.1:对比度增强

由于照明方式等缘故,我们发现原始图像中的金属表面缺陷和整个金属表面背景之间的灰度差较小,灰度范围较小,因而其对比度较低,金属缺陷并不明显,这不利于图像的后期处理,我们需要使用一些方法来增加图像的对比度。常见的对比度增强方法有对数变换,幂律变换,灰度级分层,灰度归一化,对比度拉伸,直方图均衡化,直方图规定化等。考虑到不同照片的背景光强并不相同,所以恒定参数的方法(如对数变换,幂律变换,灰度级分层,对比度拉伸)并不对所有图片适用,故我们考虑使用灰度归一化和直方图均衡化。

Step.2:滤波处理 

拍摄照片时,在采集过程将会不可避免的引入各种噪声,包括高斯噪声和椒盐噪声等。同时,金属表面本身就具有一定的纹理。噪声和纹理将一定程度上将金属表面缺陷掩盖,从而导致会提取中产生错误,我们需要先对图像进行滤波处理以减少后续误检测。滤波方法主要分为空域滤波与频域滤波,且二者的关系满足卷积定理。其中空域滤波主要有均值滤波,中值滤波,高斯滤波与双边滤波;频率滤波注意有傅里叶变换滤波,离散余弦变换滤波与小波变换滤波。这些算法虽然可以减少噪声,但是也会滤除部分细节信息,导致某些缺陷细节的丢失。所有我们需要寻找新的滤波算法来实现。

Step.3:阈值分割

我们得到滤波图像后,还需要进行二值化阈值处理,从而恰当提取出缺陷信息。传统的阈值分割需要确定阈值,但对于不同复杂的金属缺陷图片,我们无法对所有的图片使用相同的阈值,我们拟使用全局/局部优化阈值分割,自动确定最佳的阈值。

Step.4:形态学处理

受限于原图质量与图像阈值分割算法,二值图像中某些应该连通的区域可能被阈值分割了,例如划痕缺陷由于在某处灰度值较低而被错误分割,导致一条划痕可能会被分离为多个线段。故我们需要进行闭运算来连接临近物体。同时,图片中某些缺陷较大(例如划痕宽度较大),在后续边缘检测后,一条直线的两个边缘相距较大,直线提取算法会误将同一根线作为两根相互平行划痕。故我们还需要对缺陷进行细化操作。

Step.5: 特征提取

该部分可以使用两种方法,一种是基于通用的特征提取算法(例如HOG, LBP, Haar算法等);另一种是基于我们所要检测的特定金属缺陷进行特定的特征来直接对划痕进行分类。我将分别对这两种方法进行测试。

Step.6: 分类训练

如果我们使用了通用的特征提取算法,我们将要对其进行分类监督训练,常用的监督学习算法包括:K临近算法(KNN),朴素贝叶斯算法,决策树算法,支持向量机(svm),逻辑回归等。由于支持向量机具有优秀的泛化能力,且在小样本训练集能够得到比其他算法好的多的效果[6],我们拟选择支持向量机算法。

Step.7: 缺陷位置大小计算

   我们提取到缺陷后,需要不同特征来表征缺陷的大小与位置。对与’轧入氧化皮’,我们使用’轧入氧化皮’个数来表征缺陷大小,用其质心表征其位置;对于斑点,我们使用斑点中的面积占整个图片的比例来表征缺陷大小。对于划痕,我们使用划痕的两个端点来表征缺陷位置,用划痕长度标准缺陷大小。

Step.8: GUI设计

为了方便用户使用,我们设计了GUI界面,能够选择电脑中的图片,且能在点击’图像处理’后显示提取到的缺陷信息(类型与位置大小),对于划痕长度,我们能够让用户输入相机的焦距与物距长度,从而根据几何光学知识计算出实际划痕大小,并将每个划痕的像面大小与实际大小显示出来。同时GUI能够让用户通过按键前往数据集的下载网站。

📣 部分代码

%GETMAPPING returns a structure containing a mapping table for LBP codes.

%  MAPPING = GETMAPPING(SAMPLES,MAPPINGTYPE) returns a

%  structure containing a mapping table for

%  LBP codes in a neighbourhood of SAMPLES sampling

%  points. Possible values for MAPPINGTYPE are

%       'u2'   for uniform LBP

%       'ri'   for rotation-invariant LBP

%       'riu2' for uniform rotation-invariant LBP.

%

%  Example:

%       I=imread('rice.tif');

%       MAPPING=getmapping(16,'riu2');

%       LBPHIST=lbp(I,2,16,MAPPING,'hist');

%  Now LBPHIST contains a rotation-invariant uniform LBP

%  histogram in a (16,2) neighbourhood.

%

function mapping = getmapping(samples,mappingtype)

% Version 0.2

% Authors: Marko Heikkil?, Timo Ahonen and Xiaopeng Hong

% Changelog

% 0.1.1 Changed output to be a structure

% Fixed a bug causing out of memory errors when generating rotation

% invariant mappings with high number of sampling points.

% Lauge Sorensen is acknowledged for spotting this problem.

% Modified by Xiaopeng HONG and Guoying ZHAO

% Changelog

% 0.2

% Solved the compatible issue for the bitshift function in Matlab

% 2012 & higher

matlab_ver = ver('MATLAB');

matlab_ver = str2double(matlab_ver.Version);

if matlab_ver < 8

    mapping = getmapping_ver7(samples,mappingtype);

else

    mapping = getmapping_ver8(samples,mappingtype);

end

end

function mapping = getmapping_ver7(samples,mappingtype)

disp('For Matlab version 7.x and lower');

table = 0:2^samples-1;

newMax  = 0; %number of patterns in the resulting LBP code

index   = 0;

if strcmp(mappingtype,'u2') %Uniform 2

    newMax = samples*(samples-1) + 3;

    for i = 0:2^samples-1

        j = bitset(bitshift(i,1,samples),1,bitget(i,samples)); %rotate left

        numt = sum(bitget(bitxor(i,j),1:samples));  %number of 1->0 and

                                                    %0->1 transitions

                                                    %in binary string

                                                    %x is equal to the

                                                    %number of 1-bits in

                                                    %XOR(x,Rotate left(x))

        if numt <= 2

            table(i+1) = index;

            index = index + 1;

        else

            table(i+1) = newMax - 1;

        end

    end

end

if strcmp(mappingtype,'ri') %Rotation invariant

    tmpMap = zeros(2^samples,1) - 1;

    for i = 0:2^samples-1

        rm = i;

        r  = i;

        

        for j = 1:samples-1

            r = bitset(bitshift(r,1,samples),1,bitget(r,samples)); %rotate

            %left

            if r < rm

                rm = r;

            end

        end

        if tmpMap(rm+1) < 0

            tmpMap(rm+1) = newMax;

            newMax = newMax + 1;

        end

        table(i+1) = tmpMap(rm+1);

    end

end

if strcmp(mappingtype,'riu2') %Uniform & Rotation invariant

    newMax = samples + 2;

    for i = 0:2^samples - 1

        j = bitset(bitshift(i,1,samples),1,bitget(i,samples)); %rotate left

        numt = sum(bitget(bitxor(i,j),1:samples));

        if numt <= 2

            table(i+1) = sum(bitget(i,1:samples));

        else

            table(i+1) = samples+1;

        end

    end

end

mapping.table=table;

mapping.samples=samples;

mapping.num=newMax;

end

function mapping = getmapping_ver8(samples,mappingtype)

disp('For Matlab version 8.0 and higher');

table = 0:2^samples-1;

newMax  = 0; %number of patterns in the resulting LBP code

index   = 0;

if strcmp(mappingtype,'u2') %Uniform 2

    newMax = samples*(samples-1) + 3;

    for i = 0:2^samples-1

        i_bin = dec2bin(i,samples);

        j_bin = circshift(i_bin',-1)';              %circularly rotate left

        numt = sum(i_bin~=j_bin);                   %number of 1->0 and

                                                    %0->1 transitions

                                                    %in binary string

                                                    %x is equal to the

                                                    %number of 1-bits in

                                                    %XOR(x,Rotate left(x))

        if numt <= 2

            table(i+1) = index;

            index = index + 1;

        else

            table(i+1) = newMax - 1;

        end

    end

end

if strcmp(mappingtype,'ri') %Rotation invariant

    tmpMap = zeros(2^samples,1) - 1;

    for i = 0:2^samples-1

        rm = i;

    

        r_bin = dec2bin(i,samples);

        for j = 1:samples-1

            r = bin2dec(circshift(r_bin',-1*j)'); %rotate left    

            if r < rm

                rm = r;

            end

        end

        if tmpMap(rm+1) < 0

            tmpMap(rm+1) = newMax;

            newMax = newMax + 1;

        end

        table(i+1) = tmpMap(rm+1);

    end

end

if strcmp(mappingtype,'riu2') %Uniform & Rotation invariant

    newMax = samples + 2;

    for i = 0:2^samples - 1

        

        i_bin =  dec2bin(i,samples);

        j_bin = circshift(i_bin',-1)';

        numt = sum(i_bin~=j_bin);

  

        if numt <= 2

            table(i+1) = sum(bitget(i,1:samples));

        else

            table(i+1) = samples+1;

        end

    end

end

mapping.table=table;

mapping.samples=samples;

mapping.num=newMax;

end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值