✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
数字信号调制是将数字信息加载到模拟载波信号上的关键技术,广泛应用于现代通信系统中。其核心在于将离散的数字信号转换为适合在信道中传输的连续信号。不同的调制方式具有不同的性能指标,尤其是在不同信道环境下的误码率表现差异显著。本文将对2PSK、QPSK、8PSK等几种常见的相移键控(PSK)调制方式进行分析,并通过理论推导和仿真比较,探讨其在瑞利信道和高斯信道下的误码率性能。
一、 各种PSK调制方式的原理及特点
相移键控(PSK)调制是利用载波信号的相位变化来表示数字信息的一种调制方式。其核心思想是将输入的数字序列映射到载波信号的不同相位上。
-
2PSK (Binary Phase Shift Keying): 也称为BPSK,是最简单的PSK调制方式。它使用两个相位分别表示二进制的“0”和“1”,相位差为180°。其抗噪声能力较弱,但实现简单。
-
QPSK (Quadrature Phase Shift Keying): 使用四个相位分别表示两个比特的组合(00, 01, 10, 11),相位差为90°。相比于BPSK,QPSK具有更高的频谱效率,但抗噪声能力略低。
-
8PSK (8-ary Phase Shift Keying): 使用八个相位分别表示三个比特的组合,相位差为45°。其频谱效率进一步提高,但抗噪声能力最弱。
一般情况下,PSK调制方式的频谱效率随着调制阶数的增加而提高,但同时抗噪声能力也会下降。这是因为更高的阶数意味着相位间隔更小,噪声更容易导致相位误判,从而增加误码率。
二、 瑞利信道和高斯信道模型
本文考虑两种典型的信道模型:
-
高斯信道 (AWGN Channel): 加性高斯白噪声信道是理想信道模型,其噪声具有零均值,方差为常数的特性,且与信号无关。它常被用于分析调制系统的基本性能。
-
瑞利信道 (Rayleigh Channel): 瑞利信道是一种多径衰落信道,其信道衰落服从瑞利分布。该模型广泛应用于无线通信环境,例如城市环境中的移动通信。瑞利衰落会引起信号幅度变化,进而影响信号质量,导致误码率升高。
三、 误码率的理论分析与计算
四、 仿真结果与分析
为了验证理论分析结果并比较不同调制方式在不同信道下的性能,本文进行了MATLAB仿真。仿真中,我们设定相同的信噪比(SNR),并计算不同调制方式在AWGN信道和瑞利信道下的误码率(BER)。
五、 结论
本文对2PSK、QPSK、8PSK三种PSK调制方式在AWGN信道和瑞利信道下的误码率性能进行了分析和仿真比较。结果表明,在相同SNR下,BPSK具有最低的BER,而8PSK具有最高的BER,这与理论分析结果一致。瑞利信道比AWGN信道具有更高的误码率。选择合适的调制方式需要根据实际信道环境和对系统性能的要求进行权衡。在对误码率要求较高的场合,应优先考虑BPSK或QPSK;而在需要提高频谱效率的情况下,可以考虑更高阶的PSK调制,但需采取相应的抗衰落技术来降低误码率。未来的研究可以进一步探讨更复杂的调制方式以及更有效的抗衰落技术,以提高数字通信系统的可靠性和效率。
📣 部分代码
m_seq=seq1;
SP=length(m_seq);
gold_seq=1-2*gold_seq; %golden序列的扩频序列
gold_seq=sqrt(1/SP)*gold_seq;
m_seq=1-2*m_seq; %m序列的扩频序列
m_seq=sqrt(1/SP)*m_seq;
L=3;
for ii=1:length(EbN0dB)
errCount_gold = 0;
totalN=0;
sigma(ii)=sqrt(1/(2*(10^(EbN0dB(ii)/10))));
while errCount_gold<errLimit
source=randi([0,1],1,N);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇