作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
水下机器人作为探索和开发海洋的重要工具,其高精度和鲁棒性的轨迹跟踪控制是实现复杂水下任务的关键。水下环境的复杂性和不确定性(例如非线性水动力、未知扰动、传感器噪声等)对传统的线性控制方法提出了严峻挑战。本文深入研究了采用全局积分滑模控制(Global Integral Sliding Mode Control, GISMC)对水下机器人进行水平轨迹跟踪控制的理论基础和实现方法。GISMC通过引入积分项,有效削除了稳态误差,并利用全局控制律保证了系统状态从任意初始条件都能快速收敛到滑模面,从而提高了控制系统的鲁棒性和跟踪精度。文章详细阐述了水下机器人的动力学模型、GISMC控制器的设计过程,包括滑模面设计、控制律推导以及稳定性分析。通过理论分析和潜在的仿真或实验结果(附),验证了该控制策略在水下机器人水平轨迹跟踪控制中的有效性和优越性,为水下机器人高精度自主导航和作业提供了有力的技术支撑。
关键词: 水下机器人;水平轨迹跟踪;全局积分滑模控制;鲁棒控制;非线性系统;水动力
1. 引言
水下机器人(Underwater Robot),包括自主水下机器人(Autonomous Underwater Vehicle, AUV)和遥控水下机器人(Remotely Operated Vehicle, ROV),在海洋资源勘探、环境监测、海底测绘、军事侦察以及水下工程等领域发挥着越来越重要的作用。在执行这些任务时,机器人往往需要精确地沿着预设轨迹运动,即实现轨迹跟踪控制。然而,水下环境固有的复杂性和不确定性,如水动力作用的强非线性、时变性和耦合性,未知的水流和波浪扰动,以及执行器饱和和传感器噪声等,都使得水下机器人的高精度轨迹跟踪控制成为一个极具挑战性的问题。
传统的比例-积分-微分(PID)控制、线性二次调节(LQR)等方法虽然在一定程度上可以应用于水下机器人的控制,但其性能对模型精度和扰动敏感,难以在复杂多变的水下环境中实现理想的控制效果。为了应对水下机器人的非线性和不确定性,研究人员提出了许多先进的非线性控制策略,例如反步法(Backstepping)、神经网络控制、模糊控制以及滑模控制(Sliding Mode Control, SMC)等。
滑模控制作为一种鲁棒的非线性控制方法,因其对模型不确定性和外部扰动具有较强的抑制能力而受到广泛关注。然而,经典的滑模控制通常会产生抖振(chattering)现象,可能对系统硬件造成损害。此外,经典滑模控制的设计往往基于局部稳定性分析,难以保证系统从任意初始状态都能快速进入滑模面,存在“到达阶段”(reaching phase)问题,可能导致稳态误差。
为了克服经典滑模控制的局限性,研究人员提出了各种改进的滑模控制方法,其中积分滑模控制(Integral Sliding Mode Control, ISMC)是一种有效的改进策略。ISMC通过在滑模面中引入积分项,能够有效消除稳态误差,提高控制精度。全局积分滑模控制(GISMC)作为ISMC的一种进一步发展,旨在设计一种全局控制律,确保系统状态能够从任意初始条件快速、鲁棒地收敛到滑模面上,从而避免或缩短到达阶段,提高系统的动态响应性能和全局鲁棒性。
本文旨在探讨GISMC在水下机器人水平轨迹跟踪控制中的应用。水平轨迹跟踪主要涉及机器人在水平面内的位置和航向控制。与三维轨迹跟踪相比,水平轨迹跟踪在许多实际应用中具有重要意义,例如水底巡航、二维区域搜索等。通过采用GISMC,期望能够实现对水下机器人水平位置和航向的高精度、鲁棒性跟踪控制,有效克服水下环境带来的挑战。
2. 水下机器人水平动力学模型
水下机器人的动力学模型是一个复杂的非线性系统,通常采用六自由度(DOF)模型描述其在三维空间中的运动。然而,对于水平轨迹跟踪控制,可以简化为在水平面内的三自由度(Surge、Sway、Yaw)模型。
考虑一个刚体水下机器人,其在地球固定坐标系 {E} 和本体坐标系 {B} 下的运动可以通过以下方程描述:
动力学方程:
忽略垂荡、横摇和纵倾运动,水平面内的动力学方程可以表示为:
Mν˙+C(ν)ν+D(ν)ν+g(η)=τ+τd
3. 全局积分滑模控制设计
全局积分滑模控制的设计主要包括滑模面设计和控制律设计两个步骤。
3.1 滑模面设计
为了实现轨迹跟踪,我们首先定义跟踪误差:
e=η−ηd
或者用本体坐标系下的速度误差表示:
s=J(η)ν−η˙d+K(η−ηd)+∫0tL(η(τ)−ηd(τ))dτ
3.2 控制律设计
3.3 稳定性分析
为了证明闭环系统的稳定性,我们构造一个李雅普诺夫函数:
V=12sTs
全局性体现在,该控制律的设计不依赖于系统初始状态,只要控制输入能够产生足够的力矩和力来驱动系统,理论上可以从任意初始状态收敛到滑模面。
4. 结论与展望
本文对水下机器人采用全局积分滑模控制进行水平轨迹跟踪控制进行了深入研究。通过构建水下机器人水平动力学模型,并基于跟踪误差设计了积分滑模面。进而,推导了能够保证系统从任意初始状态快速收敛到滑模面的全局积分滑模控制律,并进行了稳定性分析。理论分析表明,该控制策略能够有效处理水下环境的非线性和不确定性,实现高精度和鲁棒性的轨迹跟踪。
相较于经典滑模控制,引入积分项有效消除了稳态误差。而全局控制律的设计则避免或缩短了到达阶段,提高了系统的动态响应性能。虽然符号函数可能引起抖振,但可以通过光滑函数逼近来缓解。
未来的研究方向可以包括:
- 考虑执行器饱和和故障:
研究在执行器存在饱和或部分故障情况下的GISMC设计和容错控制策略。
- 自适应或学习控制:
结合自适应控制或机器学习方法,在线估计未知的水动力参数和扰动,进一步提高控制系统的鲁棒性和性能。
- 与其他控制方法的结合:
将GISMC与其他控制策略(如反步法、预测控制等)相结合,以利用不同方法的优势。
- 考虑三维轨迹跟踪:
将GISMC扩展到水下机器人三维轨迹跟踪控制,处理更复杂的运动模态。
- 硬件实现与优化:
在实际水下机器人平台上进行实验验证,并对控制算法进行实时性优化,以满足实际应用的需求。
⛳️ 运行结果
🔗 参考文献
[1] 闫方正.自主水下机器人轨迹跟踪控制研究[D].安徽理工大学,2024.
[2] 罗一汉,吴家鸣,周汇锋.基于CFD水动力参数的水下机器人轨迹跟踪控制[J].中国舰船研究, 2022, 17(3):10.DOI:10.19693/j.issn.1673-3185.02739.
[3] 陈浩华,赵红,王宁,等.复杂扰动下水下机器人的轨迹精确跟踪控制[J].中国舰船研究, 2022, 17(2):98-108.DOI:10.19693/j.issn.1673-3185.02236.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇