Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在数据驱动的时代,多变量回归预测广泛应用于金融市场分析、能源消耗预测、交通流量预估等领域。由于多变量数据蕴含复杂的时空依赖关系和非线性特征,单一模型往往难以精准捕捉,而 Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN 这五种模型各有优势,为多变量回归预测提供了不同的解题思路。接下来,我们将深入探究它们的原理、性能与应用。

一、多变量回归预测:挑战与机遇并存

多变量回归预测旨在基于多个自变量的历史数据,预测一个或多个因变量的未来趋势。以电力系统为例,发电量、用电量、气温、电价等多个变量相互影响,且数据存在长序列依赖、变量间非线性耦合以及数据噪声等问题。如何有效提取多变量数据的特征,并建立准确的预测模型,成为亟待解决的关键问题。而上述五种深度学习模型,凭借强大的特征提取能力,为攻克难题带来了新希望。

二、模型原理深度剖析

2.1 LSTM:长短期记忆网络

LSTM 作为循环神经网络(RNN)的改进版本,通过引入门控机制,有效解决了 RNN 中梯度消失和梯度爆炸的问题,能够更好地处理长序列数据。LSTM 单元包含遗忘门、输入门和输出门,遗忘门决定从上一时刻的细胞状态中丢弃哪些信息;输入门负责更新细胞状态;输出门则基于细胞状态产生当前时刻的输出。这种独特的结构使得 LSTM 能够选择性地记忆和遗忘信息,从而捕捉时间序列中的长距离依赖关系 ,在单变量和多变量时间序列预测中都有广泛应用。

2.2 CNN:卷积神经网络

CNN 最初用于图像识别领域,其核心在于卷积层、池化层和全连接层。卷积层通过卷积核在数据上滑动,提取局部特征,不同的卷积核可以捕捉不同类型的特征模式;池化层用于降低数据维度,减少计算量,同时保留主要特征;全连接层将提取到的特征进行整合,输出最终结果。在多变量回归预测中,CNN 能够高效提取数据的空间特征和局部模式,通过对多变量数据在不同维度上的卷积操作,挖掘变量间的局部关联。

2.3 CNN-LSTM:优势互补的结合

CNN-LSTM 模型将 CNN 和 LSTM 的优势相结合。先利用 CNN 对多变量数据进行特征提取,捕捉数据的局部特征和空间关系,然后将 CNN 提取的特征输入到 LSTM 中,借助 LSTM 的门控机制处理时间序列信息,挖掘数据的时间依赖关系。这种组合使得模型既能处理数据的局部模式,又能应对长序列依赖,在多变量回归预测中表现出良好的性能 。

2.4 Transformer:自注意力机制的革新

Transformer 摒弃了传统的循环结构,基于自注意力机制构建。自注意力机制能够计算输入序列中每个元素与其他元素之间的关联程度,从而在不依赖循环的情况下,有效捕捉长距离依赖关系,实现并行计算。Transformer 由编码器和解码器组成,编码器负责对输入序列进行特征提取,解码器则根据编码器的输出和已生成的序列进行预测。在多变量回归预测中,Transformer 能够同时处理多个变量的信息,快速捕捉变量间的全局依赖关系,尤其适用于处理长序列多变量数据。

2.5 Transformer-LSTM:强强联合的升级

Transformer-LSTM 模型融合了 Transformer 和 LSTM 的优点。它先利用 Transformer 的自注意力机制对多变量数据进行全局特征提取,捕捉变量间的长距离依赖和复杂关系,再通过 LSTM 进一步处理时间序列信息,增强对局部时间依赖的建模能力。这种结合方式弥补了 Transformer 在局部时间建模上的不足,以及 LSTM 在全局信息捕捉上的短板,为多变量回归预测提供了更强大的工具。

三、模型性能对比与分析

为了直观展现五个模型在多变量回归预测中的表现,我们选取金融市场的股票价格、交易量、市盈率等多变量数据,以及能源领域的发电量、用电量、气温等多变量数据作为实验数据集,并采用均方误差(MSE)、平均绝对误差(MAE)和决定系数(

R2

)作为评价指标。

实验结果显示,在处理短序列、局部特征明显的多变量数据时,CNN 和 CNN-LSTM 模型表现出色,它们能够快速提取数据的局部特征,在 MSE 和 MAE 指标上相对较低;对于长序列、存在复杂时间依赖关系的多变量数据,LSTM 和 Transformer-LSTM 凭借其对时间序列的处理能力,在

R2

指标上表现较好,能够更准确地拟合数据趋势;而 Transformer 模型在处理长序列多变量数据时,由于强大的自注意力机制,能够快速捕捉全局信息,在预测速度和全局特征提取上具有明显优势,但在局部时间特征的建模上稍逊一筹。

四、实际应用案例展示

4.1 金融市场预测

在股票市场预测中,某投资机构使用 CNN-LSTM 模型对多只股票的价格、交易量等变量进行回归预测。CNN 提取股票数据的局部波动特征,LSTM 挖掘价格变化的时间趋势,模型成功预测了股票价格的短期波动,为投资决策提供了有力支持;而另一机构采用 Transformer 模型,通过自注意力机制捕捉不同股票之间以及股票与宏观经济指标之间的全局关联,在长期投资策略制定上发挥了重要作用。

4.2 能源消耗预测

在城市能源消耗预测场景中,Transformer-LSTM 模型被应用于分析用电量、气温、工业产值等多变量数据。Transformer 提取各变量间的全局关系,如气温与用电量的季节性关联,LSTM 进一步细化时间序列上的变化趋势,预测结果帮助能源公司合理安排发电计划,降低运营成本;LSTM 模型则在一些对历史数据依赖较强、数据变化相对平稳的能源子领域,如居民日常用电量预测中,也取得了不错的效果。

五、应用建议与未来展望

根据不同的应用场景和数据特点,选择合适的模型至关重要。若数据呈现短序列、局部特征丰富的特点,CNN 或 CNN-LSTM 是较好的选择;对于长序列、依赖时间趋势的多变量数据,LSTM、Transformer-LSTM 更能发挥优势;而当需要快速处理长序列数据,捕捉全局依赖关系时,Transformer 则更为适用。

未来,随着深度学习技术的不断发展,这些模型有望与更多先进技术融合,如结合注意力机制进一步提升特征提取能力,引入强化学习实现动态自适应预测。同时,在模型轻量化、可解释性等方面也将不断取得突破,使其在多变量回归预测领域发挥更大的价值,为各行业的智能化决策提供更精准、高效的支持。

⛳️ 运行结果

图片

图片

图片

图片

图片

图片

📣 部分代码

warning off             % 关闭报警信息

close all               % 关闭开启的图窗

clear                   % 清空变量

clc                     % 清空命令行

%%  导入数据

result = xlsread('data.xlsx');

%%  数据分析

num_samples = length(result);  % 样本个数

or_dim = size(result, 2);      % 原始特征+输出数目

kim =  4;                      % 延时步长(kim个历史数据作为自变量)

zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集

for i = 1: num_samples - kim - zim + 1

    res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];

end

%%  数据集分析

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值