方法十一:基于身体对称性的摔倒检测 方法十二:基于人体深度信息的摔倒检测

方法十一:基于身体对称性的摔倒检测

该方法基于人体的对称性变化来检测摔倒。当人体处于站立状态时,左右半身的对称性较强;而摔倒后,人体的对称性通常会发生剧烈变化,尤其是上半身和下半身的对称性。

步骤:
  1. 关键点提取:使用姿态估计模型(如 YOLOv8、OpenPose)提取人体的关键点。
  2. 对称性分析:基于人体左右半身关键点的位置,计算左右半身的对称性。
  3. 摔倒判定:当左右半身的对称性变化超过设定阈值时,判断摔倒。
代码实现:基于身体对称性的摔倒检测
 

python

复制编辑

import cv2 import numpy as np from ultralytics import YOLO # 加载 YOLOv8 模型进行姿态估计 model = YOLO("yolov8n-pose.pt") # 使用预训练的 YOLOv8 模型进行姿态检测 # 摔倒判定的对称性阈值 FALL_THRESHOLD_SYMMETRY = 0.2 # 左右半身对称性变化的阈值 # 计算左右半身对称性的函数 def calculate_symmetry(left_points, right_points): left_centroid = np.mean(left_points, axis=0) # 计算左侧关键点的中心 right_centroid = np.mean(right_points, axis=0) # 计算右侧关键点的中心 # 计算左右两侧中心点的距离,作为对称性的指标 symmetry_score = np.linalg.norm(left_centroid - right_centroid) return symmetry_score cap = cv2.VideoCapture("path_to_your_video.mp4") # 替换为视频路径 while cap.isOpened(): ret, frame = cap.read() if not ret: break # 使用 YOLOv8 进行姿态检测 results = model(frame) keypoints = results[0].keypoints.cpu().numpy() if results[0].keypoints is not None else None if keypoints is not None: keypoints = keypoints[0] # 获取第一个检测到的人的关键点 # 提取左右半身的关键点 left_points = keypoints[[5, 7, 9, 11, 13]] # 左侧关键点(肩膀、手臂、腰部、膝盖) right_points = keypoints[[6, 8, 10, 12, 14]] # 右侧关键点(肩膀、手臂、腰部、膝盖) # 计算左右半身对称性 symmetry_score = calculate_symmetry(left_points, right_points) # 判断摔倒:对称性变化超过阈值,认为摔倒 if symmetry_score > FALL_THRESHOLD_SYMMETRY: cv2.putText(frame, "FALL DETECTED!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # 显示检测到的关键点 for keypoint in keypoints: if len(keypoint) > 2 and keypoint[2] > 0.4: # 过滤低置信度的点 x, y = int(keypoint[0]), int(keypoint[1]) cv2.circle(frame, (x, y), 5, (0, 255, 0), -1) # 绘制绿色圆圈表示关键点 # 显示视频 cv2.imshow("Fall Detection - Symmetry Analysis", frame) # 按 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()

代码解释:

  1. 对称性分析:通过提取人体左右半身的关键点(如左肩、右肩、左膝、右膝等),计算左右半身的对称性。摔倒时,左右半身的对称性会发生明显变化。
  2. 摔倒判定:通过计算左右半身的对称性变化,当变化超过设定阈值(FALL_THRESHOLD_SYMMETRY)时,判定为摔倒。
  3. 实时显示:每一帧中显示摔倒检测结果。

优点:

  • 无需额外硬件支持:基于图像分析的算法,不需要特殊的传感器或硬件设备。
  • 对摔倒检测敏感:该方法利用人体的自然对称性来检测摔倒,通常具有较高的精度。

缺点:

  • 受限于姿态估计的准确性:该方法的准确性依赖于人体关键点提取的准确性,背景复杂或遮挡时可能出现误判。
  • 对复杂背景敏感:复杂场景中可能会对人体的对称性计算产生影响。

方法十二:基于人体深度信息的摔倒检测

通过引入深度信息(例如,通过深度摄像头或结构光技术获取),我们可以更加准确地判断摔倒事件。在三维空间中,摔倒通常会导致人体的垂直方向位移(z轴)的剧烈变化,基于此可以检测摔倒。

步骤:
  1. 深度信息获取:通过深度摄像头(如 Kinect、Intel RealSense 等)获取每一帧的深度图。
  2. 深度图处理:将深度图与 RGB 图像结合,提取人体的三维坐标。
  3. 摔倒判定:摔倒时,人体的高度(z轴坐标)会发生剧烈变化,通过分析 z 坐标的变化来判断摔倒。
代码实现:基于深度信息的摔倒检测(假设有深度数据)
 

python

复制编辑

import cv2 import numpy as np # 假设我们已经获取了深度图像和RGB图像 cap_rgb = cv2.VideoCapture("path_to_rgb_video.mp4") # RGB视频输入 cap_depth = cv2.VideoCapture("path_to_depth_video.mp4") # 深度视频输入 # 摔倒判定的阈值 FALL_THRESHOLD_Z_CHANGE = 0.5 # z轴变化阈值(单位:米) while cap_rgb.isOpened() and cap_depth.isOpened(): ret_rgb, frame_rgb = cap_rgb.read() ret_depth, frame_depth = cap_depth.read() if not ret_rgb or not ret_depth: break # 假设深度图像已经被归一化(0-1范围) depth_frame_normalized = frame_depth / 255.0 # 简单归一化操作 # 假设我们已提取人体的深度坐标(此处以某个假设的关键点为例) # 提取RGB图像中的关键点坐标 keypoint_rgb = (300, 200) # 以某个关键点(例如头部)为例 depth_value = depth_frame_normalized[keypoint_rgb[1], keypoint_rgb[0]] # 获取该关键点的深度值 # 假设我们有一个前一帧的深度值 previous_depth_value = 1.0 # 假设初始深度值为1米(站立时) # 计算深度值的变化量 depth_change = abs(depth_value - previous_depth_value) # 判断摔倒:如果深度变化超过阈值,认为摔倒 if depth_change > FALL_THRESHOLD_Z_CHANGE: cv2.putText(frame_rgb, "FALL DETECTED!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # 显示结果 cv2.imshow("Fall Detection - Depth Information", frame_rgb) # 按 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break previous_depth_value = depth_value # 更新前一帧的深度值 cap_rgb.release() cap_depth.release() cv2.destroyAllWindows()

代码解释:

  1. 深度图像处理:我们假设通过深度摄像头获取了每一帧的深度图像(frame_depth)。然后将深度图像归一化,提取关键点(如头部或腰部)的深度值(z轴坐标)。
  2. 摔倒判定:通过计算深度值的变化,若某个关键点的深度值变化超过设定阈值,则认为发生了摔倒。
  3. 实时显示:在每一帧中,如果检测到摔倒,则显示“FALL DETECTED!”提示。

优点:

  • 准确度高:利用深度信息,可以更准确地判断摔倒,避免了单纯基于图像的算法可能受到的背景干扰。
  • 适用于复杂环境:深度信息对于复杂背景和遮挡情况更具鲁棒性。

缺点:

  • 硬件要求高:需要配备深度摄像头,增加了设备的复杂性和成本。
  • 深度数据处理较为复杂:需要对深度图进行处理和分析,增加了算法的复杂性。

总结:

以上是两种基于不同技术的摔倒检测算法:

  • 基于身体对称性的摔倒检测:通过检测人体左右半身的对称性变化来判断摔倒,简单而有效。
  • 基于深度信息的摔倒检测:通过深度摄像头获取三维坐标变化,摔倒时,人体的高度变化可以作为摔倒的有效指标。

这些方法各有优缺点,选择合适的方法可以提高摔倒检测的准确性。希望这些设计能够帮助您实现更加智能和精确的摔倒检测系统!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab_python22

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值