spark实现大数据join操作的两个算法,map-side join和reduce-side join

Map-Side Join

Map-side Join使用场景是一个大表和一个小表的连接操作,其中,“小表”是指文件足够小,可以加载到内存中。该算法可以将join算子执行在Map端,无需经历shuffle和reduce等阶段,因此效率非常高。

在Hadoop MapReduce中, map-side join是借助DistributedCache实现的。DistributedCache可以帮我们将小文件分发到各个节点的Task工作目录下,这样,我们只需在程序中将文件加载到内存中(比如保存到Map数据结构中),然后借助Mapper的迭代机制,遍历另一个大表中的每一条记录,并查找是否在小表中,如果在则输出,否则跳过。

在Apache Spark中,同样存在类似于DistributedCache的功能,称为“广播变量”(Broadcast variable)。其实现原理与DistributedCache非常类似,但提供了更多的数据/文件广播算法,包括高效的P2P算法,该算法在节点数目非常多的场景下,效率远远好于DistributedCache这种基于HDFS共享存储的方式。使用MapReduce DistributedCache时,用户需要显示地使用File API编写程序从本地读取小表数据,而Spark则不用,它借助Scala语言强大的函数闭包特性,可以隐藏数据/文件广播过程,让用户编写程序更加简单。

适用于一个数据集小,另一个数据集大的情况

package spark.examples.join  
  
import org.apache.spark.{SparkContext, SparkConf}  
import org.apache.spark.SparkContext._  
  
object SparkMapsideJoin {  
  def main(args: Array[String]) {  
    val conf = new SparkConf()  
    conf.setAppName("SparkMapsideJoin")  
    conf.setMaster("local[3]")  
    conf.set("spark.shuffle.manager", "sort");  
    val sc = new SparkContext(conf)  
  
    //val table1 = sc.textFile(args(1))  
    //val table2 = sc.textFile(args(2))  
  
    val table1 = sc.parallelize(List("k1,v11", "k2,v12", "k3,v13"))  
    val table2 = sc.parallelize(List("k1,v21", "k4,v24", "k3,v23"))  
    // table1 is smaller, so broadcast it as a map<String, String>  
    val pairs = table1.map { x =>  
      val pos = x.indexOf(',')  
      (x.substring(0, pos), x.substring(pos + 1))  
    }.collectAsMap  
    val broadCastMap = sc.broadcast(pairs) //save table1 as map, and broadcast it  
  
    // table2 join table1 in map side  
    val result = table2.map { x =>  
      val pos = x.indexOf(',')  
      (x.substring(0, pos), x.substring(pos + 1))  
    }.mapPartitions({ iter =>  
      val m = broadCastMap.value  
      for {  
        (key, value) <- iter  
        if (m.contains(key))  
      } yield (key, (value, m.get(key).getOrElse("")))  
    })  
  
    val output = "d:/wordcount-" + System.currentTimeMillis() ;  
    result.saveAsTextFile(output) //save result to local file or HDFS  
  }  
}  

 

Reduce Side Join

当两个文件/目录中的数据非常大,难以将某一个存放到内存中时,Reduce-side Join是一种解决思路。该算法需要通过Map和Reduce两个阶段完成,在Map阶段,将key相同的记录划分给同一个Reduce Task(需标记每条记录的来源,便于在Reduce阶段合并),在Reduce阶段,对key相同的进行合并。

Spark提供了Join算子,可以直接通过该算子实现reduce-side join,但要求RDD中的记录必须是pair,即RDD[KEY, VALUE],

适用于两个join表数据量都很大的情况

package spark.examples.join  
  
import org.apache.spark.{SparkContext, SparkConf}  
import org.apache.spark.SparkContext._  
  
object SparkReducesideJoin {  
  def main(args: Array[String]) {  
    val conf = new SparkConf()  
    conf.setAppName("SparkMapsideJoin")  
    conf.setMaster("local[3]")  
    conf.set("spark.shuffle.manager", "sort");  
    val sc = new SparkContext(conf)  
  
    val table1 = sc.parallelize(List("k1,v11", "k2,v12", "k3,v13"))  
    val table2 = sc.parallelize(List("k1,v21", "k4,v24", "k3,v23"))  
    //table1 and table 2 are both very large  
    val pairs1 = table1.map { x =>  
      val pos = x.indexOf(',')  
      (x.substring(0, pos), x.substring(pos + 1))  
    }  
  
    val pairs2 = table2.map { x =>  
      val pos = x.indexOf(',')  
      (x.substring(0, pos), x.substring(pos + 1))  
    }  
    val result = pairs1.join(pairs2)  
    val output = "d:/wordcount-" + System.currentTimeMillis();  
    result.saveAsTextFile(output) //save result to local file or HDFS  
  }  
}  

 

### Hive 大数据相关面试题整理 以下是关于 Hive 大数据的一些常见面试题目及其解答: #### 1. **Hive 是什么?它的主要用途是什么?** Hive 是一种基于 Hadoop 的数据仓库工具,用于大规模数据分析。它可以将结构化的数据映射到数据库表中,并支持类 SQL 查询语言(称为 HiveQL)。通过 Hive,用户可以在不熟悉底层 MapReduceSpark 编程的情况下轻松查询海量数据[^1]。 --- #### 2. **Hive 中的元数据存储在哪里?为什么这样设计?** Hive 的元数据通常存储在关系型数据库管理系统(RDBMS)中,例如 MySQL 或 Derby。这种设计的原因在于 RDBMS 能够高效处理频繁的更新、修改读取操作,而这些操作如果放在分布式文件系统(如 HDFS)上会非常低效[^3]。 --- #### 3. **Hive 的架构组成有哪些部分?各部分的作用是什么?** Hive 架构主要包括以下几个组件: - 用户接口 Client:提供与用户的交互界面。 - 元数据存储 Metastore:保存 Hive 表的相关信息,如表名、列定义、分区字段等。 - 驱动器 Driver:由解析器、编译器、优化器执行器构成,负责将 SQL 转换为可执行的任务并提交给计算框架。 - 计算引擎:通常是 MapReduceSpark,用于实际执行任务。 - 存储层:使用 HDFS 进行数据持久化存储[^4]。 --- #### 4. **Hive 内部表外部表的区别是什么?** | 特性 | 内部表 | 外部表 | |--------------------|--------------------------------|-------------------------------| | 数据删除 | 删除表时也会删除对应的数据 | 删除表时不删除数据 | | 数据位置 | 默认存放在 `/user/hive/warehouse` 下 | 可指定任意路径 | | 使用场景 | 更适合管理自有数据 | 常用于访问已有数据而不影响原数据 | 这一特性使得外部表非常适合与其他系统共享数据。 --- #### 5. **如何解决 Hive 查询中的数据倾斜问题?** 数据倾斜是指某些 key 对应的数据量远大于其他 key,从而导致任务分配不平衡。常见的解决方案包括: - 添加随机前缀来打散 key 分布。 - 合理设置 reduce 数量以减少单个 task 的负载。 - 利用 skew join 提供的参数调整倾斜行为[^2]。 --- #### 6. **Hive 支持哪些类型的连接方式?它们的特点分别是什么?** Hive 主要支持以下几种连接方式: - **Map-side Join**:适用于小表与大表之间的关联,性能较高但受限于内存大小。 - **Reduce-side Join**:通用性强,能处理任意规模的表,但在 shuffle 阶段可能会引入额外开销。 - **Bucketed Map Join**:当两个表都被分桶且满足特定条件时可用,效率高。 - **Skew Join Optimization**:针对存在严重数据倾斜的情况启用特殊优化策略。 --- #### 7. **什么是 Hive 的分区分桶技术?两者有何区别?** - **分区 Partitioning**:按某个字段划分数据子集,便于快速过滤掉不需要扫描的部分。优点是可以显著提升查询速度;缺点是可能导致过多的小文件。 - **分桶 Bucketing**:依据哈希值将记录均匀分布到固定数量的 bucket 文件里。有助于抽样统计以及更高效的 join 操作--- #### 8. **Hive 如何实现数据压缩?常用的压缩算法有哪些?** 为了节省磁盘空间并加速 I/O 密集型作业,可以通过配置开启压缩功能。常用算法有 Gzip、Snappy、LZO 等。需要注意的是不同编码方案对 CPU 占用率的影响各异,在实践中需权衡利弊后选用最合适的选项。 --- #### 9. **Hive 的 ORC 格式相比传统文本格式有什么优势?** ORC (Optimized Row Columnar) 是一种专为大数据环境优化的二进制文件格式,具备如下特点: - 支持复杂的嵌套数据模型; - 自带索引机制以便跳过无关区块; - 内置轻量化压缩能力降低传输成本; - 显著提高读写吞吐量。 --- #### 10. **Hive 性能调优可以从哪几个方面入手?** - 合适的选择输入输出格式(TextFile vs SequenceFile vs ORC/ORC Snappy)。 - 设置合理的 map/reduce 并发度 (`set hive.exec.reducers.bytes.per.reducer`)。 - 开启 CBO(Cost-Based Optimizer),让 Hive 自动生成最佳执行计划。 - 应用物化视图缓存重复计算的结果集。 - 尽可能利用广播变量代替常规 join 减少网络流量消耗。 --- ```sql -- 示例代码展示如何创建一个带有分区分桶的表 CREATE TABLE IF NOT EXISTS sales ( id INT, amount DOUBLE ) PARTITIONED BY (year STRING, month STRING) CLUSTERED BY(id) INTO 16 BUCKETS STORED AS ORC; ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值