快速排序的时间复杂度nlogn是如何推导的??

本文以快速排序为例,推导了快排的时间复杂度nlogn是如何得来的,其它算法与其类似。

对数据Data = { x1, x2... xn }:

T(n)是QuickSort(n)消耗的时间;

P(n)是Partition(n)消耗的时间;

(注:Partition专指把n个数据分为大小2份的时间)


有些文章给出了快排的精确计算结果:

C(n) = n - 1 + \frac{1}{n} \sum_{i=0}^{n-1} (C(i)+C(n-i-1)) = 2n \ln n = 1.39n \log_2 n.


注:ln( n ) > 1/2 + 1/3 ... + 1/n

证明:




  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值