排序:
默认
按更新时间
按访问量

OpenCV4.0 Change Logs

https://github.com/opencv/opencv/wiki/ChangeLog OpenCV Change Logs version:4.0.0 4.0.0-alpha: September, 2018 4.0.0-beta: October, 2018 We are m...

2018-10-16 11:19:04

阅读数:110

评论数:0

深度学习与计算机视觉 看这一篇就够了(关于深度学习各层可视化的一片不错的文章)

人工智能是人类一个非常美好的梦想,跟星际漫游和长生不老一样。我们想制造出一种机器,使得它跟人一样具有一定的对外界事物感知能力,比如看见世界。 在上世纪50年代,数学家图灵提出判断机器是否具有人工智能的标准:图灵测试。即把机器放在一个房间,人类测试员在另一个房间,人跟机器聊天,测试员事先不知道另一...

2018-09-29 16:51:58

阅读数:98

评论数:0

【图像语义分割】Semantic Segmentation Suite in TensorFlow---GitHub_Link

Semantic Segmentation Suite in TensorFlow News What's New Added the BiSeNet model from ECCV 2018! Added the Dense Decoder Shortcut Connec...

2018-09-20 16:59:43

阅读数:180

评论数:0

【基于DL的图像语义分割】TensorFlow语义分割套件开源了ECCV18旷视科技BiSeNet实时分割算法

Github上的开源工程Semantic Segmentation Suite(语义分割套件),由来自美国建筑智能服务公司的机器学习工程师George Seif创建,使用Tensorflow实现了大量最新的语义分割算法,最近,该开源库新加入了CVPR2018最新公开的Dense Decoder S...

2018-09-20 16:48:57

阅读数:296

评论数:0

ECCV18 | 如何正确使用样本扩充改进目标检测性能

众所周知,在计算机视觉识别任务中,对训练样本进行增广是非常重要的,可以减少过拟合、改进模型泛化性能。 在大多数视觉任务中,对图像进行颜色改变或是增加随机噪声等这些通用数据增广操作,都会改进模型预测能力,但如果能利用特定任务的先验知识则往往会获得更大的性能改进。比如在目标检测的任务中,将目标的...

2018-09-15 09:06:23

阅读数:100

评论数:0

【基于深度学习的细粒度分类笔记8】深度学习模型参数量(weights)计算,决定训练模型最终的大小

Draw_convnet 这幅图是通过开源的工具draw_convnet(https://github.com/gwding/draw_convnet)生成的。在清楚整个前向计算网络中的每一个层的输入输出以及参数设置后可以自己手动画出计算图出来,对于参数量计算就很直观了。 feature ...

2018-09-12 14:20:54

阅读数:98

评论数:0

【基于深度学习的细粒度分类笔记6】Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

CNN的发展史        上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服。当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们...

2018-09-10 18:59:49

阅读数:63

评论数:0

【基于深度学习的细粒度分类笔记5】22岁复旦学生拿下世界深度学习竞赛冠军:50层ResNet网络

【导读】 拥有世界上最大的开源车对车(V2V)网络的 Nexar 公布了第二届 Nexar 挑战赛的结果。来自复旦大学的Hengduo Li 拿下冠军。 10月29日,Nexar 公布了第二届 Nexar 挑战赛(使用NEXET 数据库实现户外汽车识别)的获奖名单。Nexar公司成立于2015年...

2018-09-10 16:56:48

阅读数:81

评论数:0

【基于深度学习的细粒度分类笔记4】图像识别与检测挑战赛冠军方案出炉,基于偏旁部首识别 Duang 字

雷锋网(公众号:雷锋网) AI 科技评论按:随着互联网的飞速发展,图片成为信息传播的重要媒介,图片中的文本识别与检测技术也一度成为学界业界的研究热点,应用在诸如证件照识别、信息采集、书籍电子化等领域。 然而,一直以来存在的问题是,尚没有基于网络图片的、以中文为主的 OCR 数据集。基于这一痛点,...

2018-09-10 15:13:15

阅读数:61

评论数:0

【基于深度学习的细粒度分类笔记3】细粒度图像分析进展综述

大家应该都会有这样的经历:逛街时看到路人的萌犬可爱至极,可仅知是“犬”殊不知其具体品种;初春踏青,见那姹紫嫣红丛中笑,却桃杏李傻傻分不清……实际上,类似的问题在实际生活中屡见不鲜。如此问题为何难?究其原因,是普通人未受过针对此类任务的专门训练。倘若踏青时有位资深植物学家相随,不要说桃杏李花,就连差...

2018-09-10 14:25:46

阅读数:135

评论数:0

【基于深度学习的细粒度分类笔记2】弱监督学习下商品识别:CVPR 2018细粒度识别挑战赛获胜方案简介

      细粒度视觉分类(FGCV,Fine-Grained Visual Categorization)即识别细分类别的任务,一般它需要同时使用全局图像信息与局部特征信息精确识别图像子类别。细粒度分类是计算机视觉社区最为有趣且有用的开放问题之一,目前还有很多难题期待解决。       201...

2018-09-10 11:18:24

阅读数:170

评论数:0

【基于深度学习的细粒度分类笔记1】基于深度学习的细粒度物体分类综述

节选整理自:A Survey on Deep Learning-based Fine-grained Object Classification and Semantic Segmentation 细粒度分类综述 细粒度分类:同一类中不同子类物体间的分类。  难点:受视角、背景、遮挡等因素影响...

2018-09-10 10:47:35

阅读数:172

评论数:0

【Tensorflow_C++_API_2】 加载预先训练网络进行图像识别(label_image)

这个例子展示了如何加载预先训练 tensorflow 网络并使用它来识别图像中的对象。源代码在 `tensorflow/examples/label_image` 目录下。 使用默认的图片 Admiral Grace Hopper,使用 Google Inception 模型对在命令行中传递的图...

2018-09-03 19:02:20

阅读数:23

评论数:0

【Tensorflow_C++_API_1】使用C++创建计算图、Tensor、Constant、执行计算图

前言 本节主要介绍(一)中的代码,了解如何使用C++创建图和tensor,并使用它们进行计算。 代码 // tensorflow/cc/example/example.cc #include "tensorflow/cc/client/client_session.h&...

2018-09-03 19:00:38

阅读数:30

评论数:0

windows10+vs2015下编译GPU版本将Tensorflow封装成SDK

文章目录   文章目录 一、windows10下编译GPU版本的tensorflow 1、首先需要准备的环境 2、下载tensorflow源码,配置CMakeLists.txt 3、开始编译lib和dll 二、基于tensorflow C+...

2018-08-30 11:34:00

阅读数:130

评论数:0

OpenBLAS简介及在Windows7 VS2013上源码的编译过程(已验证)

此博客,部分过程有错误,但是,总体而言,思路是对的,稍加修改便可成功编译OpenBLAS的动态库和静态库OpenBLAS(Open Basic Linear Algebra Subprograms)是开源的基本线性代数子程序库,是一个优化的高性能多核BLAS库,主要包括矩阵与矩阵、矩阵与向量、向量...

2018-07-07 14:37:28

阅读数:77

评论数:0

GluonCV 0.2 — 计算机视觉工具包第二版

GluonCV 0.2 — 计算机视觉工具包第二版李沐​关注他146 人赞了该文章作者: @解浚源简介今年四月我们发布了基于Gluon的计算机视觉工具包GluonCV,里面包含了图像识别,图像分割,和物体检测的最新算法复现和预训练模型。经过丹师们两个月的努力,我们终于完成了GluonCV的第二个版...

2018-06-26 21:33:24

阅读数:459

评论数:0

【深度学习调参笔记】及其经典的一篇文章:caffe+报错︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization

一、深度学习中常用的调节参数本节为笔者上课笔记(CDA深度学习实战课程第一期)1、学习率步长的选择:你走的距离长短,越短当然不会错过,但是耗时间。步长的选择比较麻烦。步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优一般来说,前1000步,很大,0.1;到了后面,迭代...

2018-06-24 17:54:55

阅读数:54

评论数:0

【深度学习参数笔记2】Caffe:深度学习中 epoch,[batch size], iterations的区别

在大部分深度学习架构中都抛不开三个概念epoch,[batch size], iterations;接下来就对这三个概念逐一解释一下one epoch:所有的训练样本完成一次Forword运算以及一次BP运算batch size:一次Forword运算以及BP运算中所需要的训练样本数目,其实深度学...

2018-06-24 17:48:55

阅读数:51

评论数:0

【深度学习参数笔记1】谈谈深度学习中的 Batch_Size

谈谈深度学习中的 Batch_SizeBatch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开。首先,为什么需要有 Batch_Size 这个参数?Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用全数据集 ( Full Batch Learnin...

2018-06-24 17:43:05

阅读数:38

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭