【Tensorflow_DL_Note1】Windows下Tensorflow的安装过程详解

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/maweifei/article/details/79956904

一 前言

     从2015年11月,Google在GitHub上将谷歌内部的第二代分布式机器学习系统Tensorflow开源以来,这个用于机器学习和深度学习的系统便将在此之前非常流行的深度学习框架Caffe、Keras、Torch7、Theano等统统干掉;之后,Tensorflow在GitHub上的Stat和Fork蹭蹭的一路直接飙升,几乎是之前各种深度学习框架的总和,究启动原因,还是Google在工业界强大的号召力和技术实力所致,再加之,谷歌之前也有很多非常成功的开源项目,这些因素都使得大家对Google开源的这一深度学习框架的信心满满。

二 Tensorflow安装需要提前准备的软件

     [1]CUDA_Tookit9.0

     [2]cuDnn

     [3]PIP

     [4]Python

     [5]pycharm

     [6]其他的软件使用命令安装即可

三 Tensorflow的特点

     [1]高度的灵活:Tensorflow是相对高阶的机器学习和深度学习框架,用于可以很方便的使用它设计自己的深度神经网络,而不必为了追求高效的代码运行效率,亲自基于C/C++和CUDA编写自己的机器学习或者深度学习代码。Tensorflow并不是一个非常严格的“神经网络库”,它处理支持常见的深度神经网络,比如:卷积神经网络Convolutional Neural Network,CNN,循环神经网络RNN,Tensorflow还支持其他深度学习网络乃至其它计算密集型的科学计算,只要您可以将您的计算表示为一个【  数据流图】,您就可使用Tensorflow.

     [2]真正的可移植性:Tensorflow有点类似于Java,一次编写,到处运行,Tensorflow不仅可以运行在Windows、Linux、Mac等操作系统,还可以运行在Android等手持操作系统之上,不仅可以运行在台式机,也可以运行在大型的分布式系统上。

     [3]将科研和产品联系在一起:在caffe和Tensorflow等深度学习框架出现之前,如果想要将科研中的深度学习网络或者想法应用到实际的产品中,是需要大量的代码重写工作的,其实现难度非常之难,这些深度学习框架出现之后,科研人员便可以很容易的将自己科研过程中的成果和想法应用到实际的产品之中。

     [4]自动求微分:基于梯度的机器学习算法会受益于Tensorflow中的自动求微分能力。

     [5]多语言支持:Tensorflow和caffe一样,其核心代码都是用C++编写的,使用C++简化了线上部署额复杂度,并让【手机】这种内存和CPU资源都极度紧张的嵌入式设备可以运行复杂的模型,因此,Tensorflow对于C++的支持是天然的;当然,要说Tensorflow当前支持最全面,最简单易用,最好的还是Python接口,除了这两种主要的接口之外,Tensorflow还支持Java语言、Go语言,但是在算法实际的实现过程中,需要考虑的是,基于python的实现虽然简单易用,但是消耗的资源较高,执行效率较低,和C++接口相比。

     [6]性能最优:由于Tensorflow对于线程、队列、异步操作等给予了最佳的支持,因此,Tensorflow可以将您使用的硬件性能达到最优。比如说你有含有4块显卡,32个CPU的工作站,那么,使用Tensorflow,将会将您这些设备都利用起来。除此之外,Tensorflow2016年4月还开源了Tensorflow的分布式版本,使用16块GPU可以达到单块GPU执行效率的15倍,使用50块GPU可以达到单块GPU显卡执行效率的40倍。

四 Tensorflow的安装

     上面说了这么一大堆,相信大家对于Tensorflow已经有一个感性的认识,下面给大家讲一讲在Windows下如何安装Tensorflow,以及在安装Tensorflow的过程中需要注意的问题;并且,在此,给出大家几个关键词,监督学习,半监督学习,神经网络,深度神经网络,卷积神经网络,置信神经网络、深度信念网络、全卷积神经网络、生成式对抗网络;LeNet-5、AlexNet、VGG16、ResNet、Faster-RNN等;线性回归模型、决策树、支持向量机、集成学习、聚类、迁移学习、强化学习等,有了这些概念,就可以进入Tensorflow的安装和学习了。

      安装的过程中,可以参考Tensorflow官方网站中的安装教程,具体的链接如下所示:

      Link: https://tensorflow.google.cn/install/install_windows




      因为博主安装的是Windows10,GPU版本环境下的Tensorflow,因此,在安装Tensorflow之前,首先需要安装显卡驱动、cuDnn。

      [1]显卡驱动的安装:y因为我自己的电脑显卡是940MX,因此,我安装的显卡驱动和CUDA工具开发包是CUDA Tooktit9.0,CUDA Tookit9.0是CUDA高性能编程的开发工具包,现在的CUDA Tookit工具包不仅包含CUDA开发的SDK,同时也包含显卡驱动。

      Link:https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10

      [2]cuDnn的安装:https://developer.nvidia.com/cudnn,cuDNN是NVIDIA专门针对Deep Learning框架设计的一套GPU 如加速方案,如下所示:


      需要说明的是,在下载cuDNN库的时候,需要注册一个NVIDIA的账号,使用自己的QQ邮箱注册一个就可以了,但是需要注意的一点是,在选择cuDNN的时候,需要注意cuDNN的版本一定要与上一步安装的CUDA版本一致,由于博主的电脑使用的线宽是940MX,安装CUDA组件是CUDA Tooktit9.0,所以,博主选择的cuDNN9.0版本。

     [3]Python的安装:点击链接https://www.python.org/downloads/release/python-352/,然后,直接将网页直接往下拉, 因为博主是Win1064为系统,选择如下图所示,将软件下下来时候,直接点击下一步,下一步就可以了。安装好之后,打开cmd,然后输入python,则出现版本的版本号,说明安装成功,如下图所示。



      [4]PIP的安装,安装PIP的第一步,是首先下载PIP软件包,PIP安装包的下在,直接去Python的官网,然后,如下图所示,  之后,搜索pip,下载即可。https://www.python.org/;



      下载成功之后,对软件包进行解压,最好将软件包解压到C:\Users\用户名下,例如我的目录为C:\Users\wei,因为这样在命令下安装起来将会很方便,解压之后如下图所示:


       然后,打开cmd,输入命令行:python setup.py install安装,如下图所示:




     然后,输入命令行pip -V,便可以看到PIP的版本信息,则说明安装成功。

    [5]Tensorflow的安装:Tensorflow的安装两种版本的选择,一种是GPU版本,一种是CPU版本,CUP和GPU版本的安装命令如下所示:

            【1】CPU版本的安装:pip install --upgrade tensorflow

            【2】GPU版本的安装:pip install --upgrade tensorflow-gpu

   等待下载安装,下载和安装的过程比较长,看自己的网速,我的安装过程会持续很长时间,安装成功后,如下图所示,整个过程中安装的软件有:numpy、six、protobuf、tensorflow等。


       安装完成之后,在命令行中,输入python,进入python命令行,然后输入import tensorflow as tf,如果显示如下所示,则说明一切安装成功。


      【5】安装PyCharm,并且进行相应的配置。

阅读更多

扫码向博主提问

马卫飞

专注深度学习,计算机视觉,图像处理领域
  • 擅长领域:
  • 深度学习算法
  • 计算机视觉算法
  • 图像处理算法
  • Tensorflow
  • OpenCv
去开通我的Chat快问

没有更多推荐了,返回首页