根据前序和中序推出后序

最近面试总遇到这种根据给出的两类序遍历,然后求按另一种形式序的遍历。看来有必要好好总结下这个知识点,省的每次笔试时都得花不少时间推导。

首先,我们看看前序、中序、后序遍历的特性: 
前序遍历:(根—>左—>右)
    1.访问根节点 
    2.前序遍历左子树 
    3.前序遍历右子树 
中序遍历:(左—>根—>
    1.中序遍历左子树 
    2.访问根节点 
    3.中序遍历右子树 
后序遍历:(左—>右—>
    1.后序遍历左子树 
    2.后序遍历右子树 
    3.访问根节点

 

三序中知道其中两个就可以推出第三个,但前提是我们必须知道中序(这里是针对二叉树的,不包括二叉搜索树).因为:先序和后序给我们提供的信息是一样的--告诉我们谁是根节点,中序则告诉我们左右子树在哪儿。

例:已知先序为eacbdgf,中序为abcdefg,求后序。

由先序我们知道e为根节点,我们在中序中把左右子树括起来 --(abcd)e(fg)

同样对左子树abcd进行分析,先序为acbd,中序为abcd.--a(bcd)

递归下去就可以了

后序为bdcafge

 

扩展:

在2014年阿里实习生招聘试题中就有一个问题:

下面关于二叉搜索树的是否正确?

给定一棵二叉搜索树的前序和后序遍历结果,无法确定这棵二叉搜索树。

这个说法是错误的。

二叉树(不是搜索二叉树),必须是中根加上先根或者后根就能构造出树,但是,这里面说了是二叉搜索树,已经暗含中根了

阅读更多
个人分类: 常见面试题
上一篇寻找数组中第二大或第二小的数值
下一篇树的子结构
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭