Maxwei_wzj的OI世界

Imagination is more important than knowledge.

排序:
默认
按更新时间
按访问量

小W的神奇口胡

这里会口胡一些乍一看会做,或者没时间写(或者懒得写)的题目,或者一道题目的其他解法,应该很少更新,不用等了…… 【BZOJ3456】城市规划-分治NTT 测试地址:城市规划 做法:本题需要用到分治NTT。 实际上这题做法挺多的,我用多项式求逆写了这一题,据说还可以用多项式求ln写...

2018-06-20 19:38:27

阅读数:105

评论数:0

NOIP2018差点退役+心态爆炸杂思

本篇文章负能量程度爆表,且文字间衔接逻辑完全混乱,强烈不建议阅读。 是的,我并不打算在这里写我考场上怎么想题写题,我可能只是来抒发一下我可能真的即将要退役的感慨吧…(说是感慨,可能只是对自己失败人生的吐槽和牢骚) 考试前我自以为我准备不错,专门请假一天颓废调整心态,通关了Undertale和Del...

2018-11-12 22:49:36

阅读数:64

评论数:1

【BZOJ2144】跳跳棋-二分+LCA

测试地址: 跳跳棋 做法: 本题需要用到二分+LCA。 一道神题。注意到三个棋子可以进行一下的跳跃: 1.中间的棋子跳过两边的棋子向外跳跃; 2.距离中间棋子较近的那个棋子跳过中间的妻子向内跳跃。 因为限制了只能跳过一个棋子,所以上面的两种跳跃方式就是全部了。而我们发现,除非两边的棋子和...

2018-11-06 15:32:13

阅读数:20

评论数:0

【BZOJ3093】A Famous Game-概率论+组合数学

测试地址:A Famous Game 题目大意: 一个袋子里有nnn个球,球的颜色只有红和蓝,红色球的数目为000 ~ nnn的概率都是相等的。现在已经从里面取出了ppp个球,其中qqq个是红色,求下一个取出的球是红色的概率。 做法: 本题需要用到概率论+组合数学。 通过这道题,我终于意识到...

2018-11-03 21:44:27

阅读数:31

评论数:0

【BZOJ3619】璀灿光华(ZJOI2014)-思维+建图

测试地址:璀灿光华 (BZOJ没有题面,所以贴了洛谷的测试地址) 做法: 本题需要用到思维+建图。 首先吐槽一下,这个题目名字是不是应该叫“璀璨”啊…算了算了,强省大佬自有用意,我这种阅读理解000分选手还是不要妄加猜测了… 注意到nnn很小,可以直接暴力枚举,O(a⋅6n)O(a\cdot 6^...

2018-11-02 19:42:59

阅读数:31

评论数:0

【BZOJ3351】Regions(IOI2009)-分块+vector

测试地址:Regions 题目大意: 给定一棵nnn个点的有根树,每个点有颜色,qqq个询问,每次询问给出两个颜色a,ba,ba,b,表示询问树中有多少对点(u,v)(u,v)(u,v)使得uuu颜色是aaa,vvv颜色是bbb,且uuu是vvv的祖先。 做法: 本题需要用到分块+vector。 ...

2018-11-02 11:00:23

阅读数:14

评论数:0

【BZOJ3131】淘金(SDOI2013)-数位DP+优先队列

测试地址:淘金 做法: 本题需要用到数位DP。 令F(x,y)F(x,y)F(x,y)为坐标(x,y)(x,y)(x,y)上的黄金数目,那么: F(x,y)=∑i=1n∑j=1n[f(i)=x]⋅[f(j)=y]F(x,y)=\sum_{i=1}^n\sum_{j=1}^{n}[f(i)=x...

2018-11-01 17:13:42

阅读数:36

评论数:0

【BZOJ4513】储能表(SDOI2016)-数位DP

测试地址:储能表 做法: 本题需要用到数位DP。 显然地,我们可以把问题转化成,令SumSumSum为所有≥k\ge k≥k的i xor ji\space xor\space ji xor&a...

2018-11-01 11:26:41

阅读数:22

评论数:0

【BZOJ3233】找硬币(AHOI2013)-DP+数论

测试地址:找硬币 做法: 本题需要用到DP+数论。 假设我们有了构造出了一个合法硬币序列xxx,怎么计算最少需要使用的硬币数量?显然,因为xkx_kxk​为xk−1x_{k-1}xk−1​的倍数,能用大的就应该用大的,那么对于最大的币值xkx_kxk​,应该要使用⌊aixk⌋\lfloor\fra...

2018-10-31 22:34:49

阅读数:18

评论数:0

【51Nod1623】完美消除-数位DP+状态压缩+单调栈

测试地址:完美消除 做法: 本题需要用到数位DP+状态压缩+单调栈。 对于一个数字,如何求出它的最小消除次数?把每一位一一推入单调栈(栈顶元素最大),并在最后把所有的元素都出栈,那么元素出栈的总次数就是最小消除次数。这一点做过单调栈题的同学应该很容易能看出来了。 那么对于这一题,显然看出是数位DP...

2018-10-31 12:03:00

阅读数:17

评论数:0

【CF840C】On the Bench-DP+组合数学

测试地址:On the Bench 题目大意: 给出一个长为nnn的序列AAA,问有多少种111 ~ nnn的排列ppp,满足对于任意1≤i<n1\le i<n1≤i<n,有APi⋅APi+1A_{P_i}\cdot...

2018-10-30 10:31:13

阅读数:26

评论数:0

【BZOJ4773】负环-倍增+Floyd

测试地址:负环 做法: 本题需要用到倍增+Floyd。 我们很快能想出O(n2m)O(n^2m)O(n2m)的算法:令f(i,j,k)f(i,j,k)f(i,j,k)为走iii条边,从jjj走到kkk的路径中最小的权值和。从小到大枚举iii转移即可。 然而并过不了,而且我们发现,负环的长度似乎也不...

2018-10-28 20:57:58

阅读数:20

评论数:0

【LuoguP4934】礼物(LGR-054)-Dilworth定理+优化建图+拓扑排序

测试地址:礼物 做法: 本题需要用到Dilworth定理+优化建图+拓扑排序。 对位运算感觉比较敏锐的话,可以看出,a&ba\&ba&b这个东西要么比a,ba,ba,b都小,要么就说明a,ba,ba,b中有一个...

2018-10-24 21:11:26

阅读数:22

评论数:0

【LuoguP3616】富金森林公园-线段树

测试地址:富金森林公园 做法: 本题需要用到线段树。 一道好题,不看题解乍一下真的不知道怎么做… 我们考虑直接维护水面在高度iii时能看见的连续段数cnt(i)cnt(i)cnt(i),考虑一块石头高度的增减对cntcntcnt的影响。为了讨论方便,我们把修改操作都看成是,先把石头高度降到最低,再...

2018-10-23 21:32:57

阅读数:26

评论数:0

【BZOJ1432】函数(ZJOI2009)-思维

测试地址:函数 做法: 本题需要用到思维。 如果在xxx坐标为负无穷时,把函数从下到上编号为111~nnn,那么在向右扫时,一旦遇到一个交点,就表示交的这两个函数上下位置进行交换。因为每两个函数间有且仅有一个交点,且不会有三个函数共点,因此这些交换是先后进行的,且一定是发生在下面的函数编号比上...

2018-10-22 19:41:45

阅读数:21

评论数:0

【BZOJ1190】梦幻岛宝珠(HNOI2007)-背包DP+思维

测试地址:梦幻岛宝珠 做法: 本题需要用到背包DP+思维。 这道题看上去是一个裸01背包,然而容量特别大,因此我们只能从其中唯一一个特殊条件入手:a⋅2ba\cdot 2^ba⋅2b形式的重量。 我们考虑把这些物品分阶段来进行决策。我们首先对每个bbb,求出重量表示为a⋅2ba\cdot 2...

2018-10-22 16:25:06

阅读数:12

评论数:0

【LuoguP2576】梦幻折纸(ZJOI2005)-思维

测试地址:梦幻折纸 做法: 本题需要用到思维。 考虑最后折出来的正方形,从上到下的各层中,有可能有两层在前后侧相连,也有可能有两层在左右侧相连。易知,无论怎么折前后侧的相连都不会成为左右侧,这启发我们分开判断两维是不是成立。 要判断某一维是不是成立,需要观察出下面两个结论: 1.如果两列i,ji,...

2018-10-22 10:51:29

阅读数:22

评论数:1

【BZOJ1483】梦幻布丁(HNOI2009)-链表+启发式合并

测试地址:梦幻布丁 做法: 本题需要用到链表+启发式合并。 首先,注意到颜色的段数等于,相邻的颜色不同的元素对数+1+1+1,而一对元素一旦颜色相同就不可能再变成不同,因此我们在改变颜色的时候,只要找到这个颜色的元素周围有没有修改后就变成颜色相同的元素即可。 我们想到用链表来连接同颜色的那些点,但...

2018-10-22 08:33:18

阅读数:13

评论数:0

【CF605C】Freelancer's Dreams-凸包

测试地址:Freelancer’s Dreams 题目大意: 有nnn项工作,每项工作有两项属性ai,bia_i,b_iai​,bi​,表示做111单位时间可以获得aia_iai​的经验和bib_ibi​的钱,现在要攒够ppp的经验和qqq的钱,且任意一个时刻只能做一项工作,每项工作进行的时间可以...

2018-10-21 16:59:58

阅读数:10

评论数:0

【CF622F】The Sum of the k-th Powers-拉格朗日插值

测试地址:The Sum of the k-th Powers 题目大意: 求∑i=1nik\sum_{i=1}^ni^k∑i=1n​ik对109+710^9+7109+7取模的值。 做法: 本题需要用到拉格朗日插值。 容易看出(或者用数学归纳法简单证明),答案f(n)f(n)f(n)是一个...

2018-10-19 17:47:15

阅读数:43

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭