概率论与数理统计:正态分布相关推论及推导(更新ing)

本文探讨了正态总体的抽样分布,重点在于统计量X的正态分布性质及其期望和方差。同时,证明了样本方差S2乘以(n-1)/σ^2服从卡方分布。对于更严谨的证明,可以参考提供的链接。
摘要由CSDN通过智能技术生成

一个正态总体的抽样分布

统计量: X ‾ = 1 n ∑ i = 1 n X i , 其 中 X i ~ N ( μ , σ 2 ) \overline{X}= \cfrac{1}{n}\sum_{i=1}^nX_{i},其中X_{i}\text{\textasciitilde} N(\mu,{\sigma^{2}} ) X=n1i=1nXiXi~N(μ,σ2) S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^2= \cfrac{1}{n-1}\sum_{i=1}^n(X_{i}-\overline{X})^2 S2=n11i=1n(XiX)2推论·:

  1. X ‾ ~ N ( μ , σ 2 n ) 证 明 : X ‾ = 1 n ∑ i = 1 n X i ~ N ( 1 n ∑ i = 1 n μ , ∑ i = 1 n σ 2 n 2 ) = N ( μ , σ 2 n ) \overline{X} \text{\textasciitilde} N(\mu,\cfrac{\sigma^{2}}{n})\\ \begin{aligned} 证明: \overline{X}&= \cfrac{1}{n}\sum_{i=1}^nX_{i} \\& \text{\textasciitilde} N( \cfrac{1}{n}\sum_{i=1}^n\mu, \sum_{i=1}^n\cfrac{\sigma^{2}}{n^2})\\ &=N(\mu,\cfrac{\sigma^{2}}{n})\end{aligned} X~N(μ,nσ2)X=n1i=1n
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值