《C语言》总结5--数据的存储

一、数据类型介绍

1.1数据类型分类

char ; short ; int ; long ; float ; double..

类型决定开辟内存空间的大小

1.2有符号数与无符号数

有符号数前缀:signed

无符号数前缀:unsigned

如果有符号位,则首个bit位为符号位,其中1表示负数,0表示正数,其余为数值位;

如果是没有符号位,则首个bit位不单独作为符号位,均为数值位。

二、整型在内存中的存储

2.1原码、反码、补码

正数的原码、反码、补码均一致。

而负数的原码为按照正负数翻译为二进制后所得到的即为原码;原码符号位不变,其它位按位取反可得到反码;反码+1得到补码。

//-1的补码
//原码:1000 0000 0000 0000 0000 0000 0000 0001
//反码:1111 1111 1111 1111 1111 1111 1111 1110
//补码:1111 1111 1111 1111 1111 1111 1111 1111

计算机所存储的是补码。并且使用补码可以将符号位和数值位统一处理,其中加法和减法也可以统一处理。不需要额外的转换。

2.2大端,小端

大端存储模式:将数值的低位保存在内存的高地址中;高位反之。

小端存储模式:将数值的低位保存在内存的低地址中;高位反之。

例如:我们定义一个整型变量a为20,它的地址是:

0000 0000 0000 0000 0000 0000 0001 0010;

将其转为16进制(计算机储存的是16进制):

0x 00 00 00 14;

如果是大端储存,则为:00 00 00 14;

如果是小端储存,则为:14 00 00 00。

三、浮点型在内存中的储存。

3.1浮点数存储规则(IEEE754标准)

根据国际标准IEEE754,任意一个二进制浮点数可以表示为下面的形式:

(-1)^S * M *2^E

(-1)^S:符号位,如果S=0则为正数,S=1则为负数。

  M:有效数字,大于等于1小于2。

  2^E:指数位。

例如:

十进制的5.0:整数部分写成二进制则为:101,而小数部分则可以写为0,这里的0表示为0*1/2;

十进制的10.75:整数部分写成二进制则为:1010,而小数部分则为11.

综上:5.0 == 101.0(二进制)

          10.75 == 1010.11(二进制)

总结一下,浮点数转化为二进制,整数部分正常转化,小数部分的分别为1/2的几次方+1/4的几次方+1/8的几次方+1/16的几次方.......

我们将其转化为(-1)^S * M *2^E的形式:

5.0:101.0,相当于1.01 * 2^2,则S为0,M为1.01,E=2.

10.75:1010.11,相当于1.01011 * 2^3,则S为0,M为1.01011,E=4

3.2浮点型在内存中的存储规则

我们知道,对于32位的机器,一共可以产生32个bit位的存储。其中S占用的内存位为1bit,M占用的为32bit,E占用的为8bit;这也叫单精度浮点数。

而对于64为的机器,一共可以产生64个bit位的存储。其中S占用的内存位为1bit,M占用的为52bit,E占用的为11bit。这也叫双精度浮点数。

S存入内存时只有0或1。

上文提到,M的范围为大于等于1,小于2。故此M总是可以写成1.XXXXXXXXXXXX,故此存储时默认省略1,用到时再加上1。

而对于E,如果E为8位,它的取值范围为0~255,如果E为11位,则范围为0~2047。我们知道,E是可以出现负数的。所以,E存入内存的时候,必须要在真实值的基础上加上一个中间数,对于8位的E,中间数为255/2=127;对于11位的E,中间数位2047/2=1023。

例如:

101.0存入内存时:

S:0

E:2+127=129

M: 01

故此存入内存时候为:

0  1000 0001   0000 0000 0000 0000 0000 001

1010.11存入内存时:

S:0

E:4+127=131

M:01011

故此写入内存时候为:

0  1000 0011  0000 0000 0000 0000 0001 011

3.3指数E从内存中取出的三种情况

3.3.1 E不全为0或不全为1

按照规则,指数E的数值减去127(32位),得到真实值,再将M前面加上1.即可。

3.3.2 E全为0

这时候,浮点数的指数E等于1-127 = -126为真实值(32位),1-1017=-1026为真实值(64位)

M就不再加上1.(因为太小了),直接还原为0.xxxxxxxxxx的小数。

3.3.3 E全为1

如果M全为0,表示无穷大

 

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值