【代码随想录|子序列系列300,674,718】

300.最长递增子序列

题目链接:300. 最长递增子序列 - 力扣(LeetCode)

1.dp数组的含义

dp[i]:以nums[i]结尾的最长递增子序列的长度

2.递推公式

 if(nums[i]>nums[j])dp[i]=max(dp[i],dp[j]+1);

最开始一直不明白为什么要加上max,后来发现,因为不加max的话那计算的dp值就是前一个值的最长子序列+1,但是因为本题求的递增子序列可以不连续,所以这个dp[i]要考虑前面递增序列的值,加上max

比如nums【0,1,2,3】

不加max  dp[i]:1,2,1,2

加上max  dp[i]:1,2,1,3

3.初始化

就算没有递增的序列那初始值应该为1

4.遍历顺序

dp[i]的值依赖于前面的值,所以i是从前向后进行遍历

dp[j]主要遍历0到i-1个值,比较i前面的值是否小于i,从前往后遍历和从后往前遍历都行

5.(打印dp数组)

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> dp(nums.size(),1);
        int result=0;
        for(int i=1;i<nums.size();i++){
            for(int j=0;j<i;j++){
                if(nums[i]>nums[j])dp[i]=max(dp[i],dp[j]+1);
            }
            result=max(result,dp[i]);
        }
        return result;
    }

};

674.最长连续递增序列

题目链接:674. 最长连续递增序列 - 力扣(LeetCode)

这道题和上一道的区别就是它要求连续的,就不用两层for循环比较该数字前面的值是否小于了,只用一层for循环判断就行

 if(nums[i]>nums[i-1]) dp[i]=dp[i-1]+1;

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        vector<int> dp(nums.size(),1);
        int result=0;
        for(int i=1;i<nums.size();i++){
          if(nums[i]>nums[i-1]) dp[i]=dp[i-1]+1;
            if(dp[i]>result)result=dp[i];
        }
        return result;
    }
};

718.最长重复子序列

题目链接:718. 最长重复子数组 - 力扣(LeetCode)

最长连续子序列

1.dp数组的含义

dp[i][j]:以i-1结尾nums1数组和j-1结尾的nums2数组的最长子数组的长度 

2.递推公式

 if(nums1[i-1]==nums2[j-1])dp[i][j]=dp[i-1][j-1]+1;//正确递推公式

最开始敲的时候我写的是 

 if(nums1[i]==nums2[j])dp[i][j]=dp[i-1][j-1]+1;//错误代码

 错是因为我这样从1开始遍历 比较也从1开始,那就是从第二个数字开始比较就会漏掉第一个数,所以要if(nums1[i-1]==nums2[j-1])dp[i][j]=dp[i-1][j-1]+1;

3.初始化

不可能有以-1结尾的nums数组,所以是没有意义的,为了在比较第一个字符的时候连续子序列能为1所以初始化为0

4.遍历顺序

内外层都是从前向后

5.(打印dp数组)

class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp(nums1.size()+1,vector<int>(nums2.size()+1,0));
        int result=0;
        for(int i=1;i<=nums1.size();i++){
            for(int j=1;j<=nums2.size();j++){
                if(nums1[i-1]==nums2[j-1])dp[i][j]=dp[i-1][j-1]+1;
            
            if(dp[i][j]>result)result=dp[i][j];
           
        }
        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值