1143.最长公共子序列
题目链接:1143. 最长公共子序列 - 力扣(LeetCode)
1.dp数组的含义
dp[i][j]:以[0,i-1]的nums1和以[0,j-1]的nums2的最长公共子序列的长度
2.递推公式
if (text1[i-1]==text2[j-1])dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
如果第i-1个字符和j-1个字符相等,那就 dp[i][j]=dp[i-1][j-1]+1;
如果第i-1个字符和j-1个字符不相等,那就保持前面字符相等的状态 dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
因为这里求的子序列是不连续的,所以比如nums1 = 【1,2,3,4,5】 , nums2 = 【1,2,3,8,5】
收集完3之后我还可以继续收集,所以dp数组最后一个数就是最大值,那在不相等的时候保持前面字符相等时的情况后面继续用
而如果是连续的话收集完3之后就不能继续收集了,得置0重新收集,dp数组的最后一个数不一定就是最大值了(可能在前面,要边遍历边取),那在不相等的时候就不做处理(因为初始化的时候该位置为0)
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
vector<vector<int>> dp(text1.size()+1,vector<int>(text2.size()+1,0));
for(int i=1;i<=text1.size();i++){
for(int j=1;j<=text2.size();j++){
if(text1[i-1]==text2[j-1])dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
return dp[text1.size()][text2.size()];//是不连续的,最后一个值就是最大值
}
};
1035.不相交的线
题目链接:1035. 不相交的线 - 力扣(LeetCode)
求相同的元素,同时要保持顺序,是求最长公共子序列的意思,把上面的代码打一遍。
class Solution {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp(nums1.size() + 1,vector<int>(nums2.size() + 1, 0));
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
return dp[nums1.size()][nums2.size()];
}
};
53.最大子数组和
题目链接:53. 最大子数组和 - 力扣(LeetCode)
1.dp数组的含义:
以i为结尾的nums[i] 的最大连续子序列的和
2.递推公式
dp[i]=max(dp[i-1]+nums[i],nums[i]);
取每个数的时候要么延续前面的值,要么重开从自己开始
这道题是求连续的子数组的和所以收集的时候要边遍历边取最大值
这里的result不能赋值为0,因为如果当nums只有一个数且不为0的时候,会只返回0,所以得赋值为nums[0]
3.初始化
dp[0]就是nums[0]结尾的子序列和,那就是nums[0];
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if(nums.size()==0)return 0;
vector<int> dp(nums.size(),0);
dp[0]=nums[0];
int result=nums[0];
for(int i=1;i<nums.size();i++){
dp[i]=max(dp[i-1]+nums[i],nums[i]);
if(dp[i]>result)result=dp[i];
}
return result;
}
};
392.判断子序列
题目链接:392. 判断子序列 - 力扣(LeetCode)
-
dp数组含义:下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]
-
递推公式:
这道题跟最长公共子序列的代码蛮像的,但是在递推公式上这道题是
else dp[i][j]=dp[i][j-1];
而最长公共子序列是
else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
我试了一下两种递推公式都可以通过,但是在定义上最长公共子序列的代码放在这里可能欠妥
比如: t:"ahbgdc" s:"abdx" 这道题上在最后dp[s.size()][t.size()]的值是0
而递推公式中加上max的话dp[s.size()][t.size()]的值最后是3,最后和s.size()(4)不相等返回false答案也对,但是这里在检查到s里的‘’x‘’的时候,不是t的子串了,所以用0来表示可能更准确一些
class Solution {
public:
bool isSubsequence(string s, string t) {
vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));
for(int i=1;i<=s.size();i++){
for(int j=1;j<=t.size();j++){
if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=dp[i][j-1];
}
}
if(dp[s.size()][t.size()]==s.size())return 1;
else return 0;
}
};