【代码随想录|子序列问题】

1143.最长公共子序列

题目链接:1143. 最长公共子序列 - 力扣(LeetCode)

1.dp数组的含义

dp[i][j]:以[0,i-1]的nums1和以[0,j-1]的nums2的最长公共子序列的长度

2.递推公式

if (text1[i-1]==text2[j-1])dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);     

如果第i-1个字符和j-1个字符相等,那就 dp[i][j]=dp[i-1][j-1]+1;

如果第i-1个字符和j-1个字符不相等,那就保持前面字符相等的状态 dp[i][j]=max(dp[i-1][j],dp[i][j-1]);   

因为这里求的子序列是不连续的,所以比如nums1 = 【1,2,3,4,5】 , nums2 = 【1,2,3,8,5】

收集完3之后我还可以继续收集,所以dp数组最后一个数就是最大值,那在不相等的时候保持前面字符相等时的情况后面继续用

而如果是连续的话收集完3之后就不能继续收集了,得置0重新收集,dp数组的最后一个数不一定就是最大值了(可能在前面,要边遍历边取),那在不相等的时候就不做处理(因为初始化的时候该位置为0)

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size()+1,vector<int>(text2.size()+1,0));
        for(int i=1;i<=text1.size();i++){
            for(int j=1;j<=text2.size();j++){
                if(text1[i-1]==text2[j-1])dp[i][j]=dp[i-1][j-1]+1;
                else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);                
            }
        }
        return dp[text1.size()][text2.size()];//是不连续的,最后一个值就是最大值
    }
};

 1035.不相交的线

题目链接:1035. 不相交的线 - 力扣(LeetCode)

求相同的元素,同时要保持顺序,是求最长公共子序列的意思,把上面的代码打一遍。

class Solution {
public:
    int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp(nums1.size() + 1,vector<int>(nums2.size() + 1, 0));
        for (int i = 1; i <= nums1.size(); i++) {
            for (int j = 1; j <= nums2.size(); j++) {
                if (nums1[i - 1] == nums2[j - 1])
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                else
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
            }
        }
        return dp[nums1.size()][nums2.size()];
    }
};

53.最大子数组和

题目链接:53. 最大子数组和 - 力扣(LeetCode)

1.dp数组的含义:
以i为结尾的nums[i] 的最大连续子序列的和

2.递推公式

dp[i]=max(dp[i-1]+nums[i],nums[i]);

取每个数的时候要么延续前面的值,要么重开从自己开始

这道题是求连续的子数组的和所以收集的时候要边遍历边取最大值

这里的result不能赋值为0,因为如果当nums只有一个数且不为0的时候,会只返回0,所以得赋值为nums[0]

3.初始化

dp[0]就是nums[0]结尾的子序列和,那就是nums[0];

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if(nums.size()==0)return 0;
        vector<int> dp(nums.size(),0);
        dp[0]=nums[0];
        int result=nums[0];
        for(int i=1;i<nums.size();i++){
            dp[i]=max(dp[i-1]+nums[i],nums[i]);
            if(dp[i]>result)result=dp[i];
        }
        return result;
    }
};

392.判断子序列

题目链接:392. 判断子序列 - 力扣(LeetCode)

  1. dp数组含义:下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

  2. 递推公式:

这道题跟最长公共子序列的代码蛮像的,但是在递推公式上这道题是

else dp[i][j]=dp[i][j-1];

而最长公共子序列是 

else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);     

我试了一下两种递推公式都可以通过,但是在定义上最长公共子序列的代码放在这里可能欠妥

比如:  t:"ahbgdc"  s:"abdx" 这道题上在最后dp[s.size()][t.size()]的值是0

而递推公式中加上max的话dp[s.size()][t.size()]的值最后是3,最后和s.size()(4)不相等返回false答案也对,但是这里在检查到s里的‘’x‘’的时候,不是t的子串了,所以用0来表示可能更准确一些

class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));
        for(int i=1;i<=s.size();i++){
            for(int j=1;j<=t.size();j++){
                if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+1;
                else dp[i][j]=dp[i][j-1];                
            }
        }
        if(dp[s.size()][t.size()]==s.size())return 1;
        else return 0;
    
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值