115.不同的子序列
题目链接:115. 不同的子序列 - 力扣(LeetCode)
1.dp数组的定义:
以i-1为结尾的s子序列中出现以j-1为结尾的t的个数是dp[i][j]
2.确定递推公式
|、当s[i-1]和t[j-1]相等的时候
dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
t是bag 现在遍历到s是babgba 现在多了一个g,那现在babgbag含有bag的数量 等于babgba原本的bag的值【dp[i-1][j]】的基础上加上增加g的存在bag的数量,看能组成多少个bag,就是看babgba有多少个ba,就是【dp[i-1][j-1]】
||、当s[i-1]和t[j-1]不相等的时候
就延续我s的上一位的情况 dp[i][j]=dp[i-1][j];
3.初始化
dp[i][0]指s字符串的子串是空字符串 那肯定算一种情况,算一种情况
dp[0][j]指空字符s的子串是一个字符串 那肯定不可能,赋值为0
class Solution {
public:
int numDistinct(string s, string t) {
vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));
for(int i=0;i<=s.size();i++){
dp[i][0]=1;
}
for(int i=1;i<=s.size();i++){
for(int j=1;j<=t.size();j++){
if(s[i-1]==t[j-1])
dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
else
dp[i][j]=dp[i-1][j];
}
}
return dp[s.size()][t.size()];
}
};
583.两个字符串的删除操作
题目链接:583. 两个字符串的删除操作 - 力扣(LeetCode)
1.dp数组的定义:
以i-1为尾的word1和j-1为尾的word2为相同的最少操作次数
2.递推公式:
|、word1[i-1]和word2[j-1]相同
那么dp[i][j]的值和删掉这两个字符的值相等 dp[i][j]=dp[i-1][j-1];
||、word1[i-1]和word2[j-1]不相同
有三种情况:
删掉word1(dp[i-1][j]+1)
删掉word2(dp[i][j-1]+1),
word1 word2都删(dp[i-1][j-1]+2)
取最小值就行了
3.初始化
dp[i][0]是指word1是空字符,word2要删多少个字符才为空,那 dp[i][0]=i;
dp[0][j]是指word2是空字符,word1要删多少个字符才为空,那dp[0][j]=j;
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp (word1.size()+1,vector<int>(word2.size()+1,0));
for(int i=0;i<=word1.size();i++){dp[i][0]=i;}
for(int j=0;j<=word2.size();j++){dp[0][j]=j;}
for(int i=1;i<=word1.size();i++){
for(int j=1;j<=word2.size();j++){
if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];
else dp[i][j]=min(min(dp[i-1][j]+1,dp[i][j-1]+1),dp[i-1][j-1]+2);
}
}
return dp[word1.size()][word2.size()];
}
};
72.编辑距离
这道题感觉跟上一道题的区别就是这道题可以换字符,比如word1:bc word2:ba 遍历到c不等于a,那就只需要进行替换操作,在word1 和word2 上一个元素中增加一个替换的操作就是:
dp[i][j] = dp[i - 1][j - 1] + 1;
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1));
for(int i=0;i<=word1.size();i++){dp[i][0]=i;}
for(int j=0;j<=word2.size();j++){dp[0][j]=j;}
for(int i=1;i<=word1.size();i++){
for(int j=1;j<=word2.size();j++){
if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];
else dp[i][j]=min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+1));
}
}
return dp[word1.size()][word2.size()];
}
};