首先有几个概念要知道:
有向无环图:简称DAG图,一个有向图中不存在环,则称为有向无环图。
AOV网:
在现代化管理中,人们常用有向图来描述和分析一项工程的计划和实施过程,一个工程常被分为多个小的子工程,这些子工程被称为活动(Activity),在有向图中若以顶点表示活动,有向边表示活动之间的先后关系,这样的图简称为AOV网。
用顶点表示活动,用弧表示活动间的优先关系的有向图称为顶点表示活动的网(Activity On Vertex Network),简称AOV网。
在网中,若从顶点i到顶点j有一条有向路径,则i是j 的
前驱
AOV网是一种有向无回路的图。
拓扑排序:对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若 ∈E(G),则u在线性序列中出现在v之前。
(王道考研2014 P201也也对拓扑排序进行了相关讲解,可参考)
实现的基本方法
拓扑排序方法如下:
(2)从网中删去该顶点,并且删去从该顶点发出的全部有向边.
(3)重复上述两步,直到剩余的网中不再存在没有前趋的顶点为止.
代码示例:
C语言版
bool TopologicalSort(Graph G)
{
InitStack(S);//初始化栈存储入度为零的顶点
for(int i=0;i<G.vexnum;i++)
{
if(indegree[i]==0)//入度为零
Push(S,i);
}
int count;
while(!IsEmpty(S))
{
Pop(S,i);
print[count++]=i;
for(p=G.vertices[i].firstarc;p;p=p->nextarc)
{
//将所有p指向的节点入度减1,并且将入读位0的压入栈
v=p->adgvex;
if(--indegree[v]==0)
{
Push(S,v);
}
}
}
if(count<G.vexnum)
return false;//排序失败
return true;
} 头排序时间复杂度:O(V+E);
7985

被折叠的 条评论
为什么被折叠?



